
Lattice theory and module theory
P. Jara, in collaboration with J. M. Garćıa, L. Merino, E. Santos
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1 Lattice decomposition

Let M be a left R–module and L(M) the lattice of all submodules of M .

If we consider the abelian group M1 = Z2 × Z2, the lattice of subgroups is:
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On the other hand, the lattice of subgroups of M2 = Z2 × Z3
∼= Z6 is:
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Lattices.

If L1 and L2 are lattices, the product, L1 × L2 is defined as

(1) (a1, b1) ≤ (a2, b2) if a1 ≤ a2 and b1 ≤ b2, or

(2) (a1, b2) ∧ (a2, b2) = (a1 ∧ a2, b1 ∧ b2), and (a1, b2) ∨ (a2, b2) = (a1 ∨ a2, b1 ∨ b2)

Therefore, L(Z2 ⊕ Z3) ∼= L(Z2)× L(Z3) and L(Z2 ⊕ Z2) 6∼= L(Z2)× L(Z2)

Problem.

Is it possible to determine when the lattice of a left R–module is the direct product of the
lattices of two non–zero submodules?



Product of lattices

If L is a bounded lattice which is the product of two bounded lattices: L = L1×L2, then

0 = (0, 0) and 1 = (1, 1).

One can identify L1 with {(a, x) | x ∈ L2 (fixed), a ∈ L1}. In particular, if we take
x = 0, or x = 1, we may have better identifications.

The following are lattice maps, and they don’t apply the top in the top.

j1 : L1 −→ L, j1(a) = (a, 0),
j2 : L2 −→ L, j2(b) = (0, b).

But each element (a, b) of L can be written as (a, b) = (a, 0) ∨ (0, b).



The image of j1 is the interval [0, (1, 0)], we call e1 = (1, 0).

The image of j2 is the interval [0, (0, 1)], we call e2 = (0, 1).

These elements e1 and e2 are special as they satisfy:

(1) e1 ∨ e2 = 1 and e1 ∧ e2 = 0. They are complemented.

(2)
e1 ∧ (a, b) = (1, 0) ∧ (a, b) = (a, 0), and
e1 ∨ (a, b) = (1, 0) ∨ (a, b) = (1, b).

(3)
e1 ∨ [(a1, b1) ∧ (a2, b2)] = e1 ∨ (a1 ∧ b1, a2 ∧ b2) = (1, b1 ∧ b2)
[e1 ∨ (a1, b1)] ∧ [e1 ∨ (a2, b2)] = (1, b1) ∧ (1, b2)

This means e1 distributes and the same for e2. They are distributive elements in the
lattice L.

Result.

There exists a bijective correspondence between:

(a) Decompositions of L as a product of bounded lattices.

(b) Elements e ∈ L which are distributive and complemented.



Case of modules

Let M be a left R–module, and L(M) the lattice of submodules, to get a decomposition
of L(M) we need a direct summand N ⊆ M (= a complemented element in L(M)) and
in addition, we need that N is distributive in L(M), or equivalently,

N + (X ∩ Y ) = (N + X) ∩ (N + Y ) and
N ∩ (X + Y ) = (N ∩X) + (N ∩ Y ), for any X, Y ⊆M.

Result. Distributive submodules can be characterized using subfactors. A subfactor of
a left R–module X is a submodule of a homomorphic image of X .

For any submodule N ⊆M the following are equivalent:

(a) For every H ⊆ M we have that N/(N ∩ H) and H/(N ∩ H) have no non–zero
isomorphic subfactors.

(b) For everyH ⊆M we have thatN/(N∩H) andH/(N∩H) have no simple isomorphic
subfactors.

(c) N ⊆M is distributive in L(M).



If, in addition, we impose to N the condition to be complemented, then the following are
equivalent:

(a) N ⊆M is distributive and complemented (there exists H such that M = N ⊕H).

(b) N and H have no isomorphic simple subfactors.

(c) Ann(n) + Ann(h) = R for any n ∈ N and any h ∈ H .

We call a direct sum decomposition M = N ⊕ H , of M , satisfying these equivalent
properties, a lattice decomposition of M .



Case of modules II. Endomorphisms

It is well known that if N ⊆⊕ M , there exists an idempotent e ∈ End(RM) such that
e(M) = N .

The problem is to characterize e to be N distributive.

If M = R, a sufficient condition is that e ∈ R = End(RR) is central idempotent. In this
case the decomposition is R = Re⊕R(1− e).

If M 6= R, this condition is not sufficient. Indeed, in the general case we obtain:

For any submodule N ⊆⊕ M , with idempotent endomorphism e ∈ End(RM), the follow-
ing are equivalent

(a) N = e(M) is distributive and complemented.

(b) e ∈ End(RM) is central idempotent and e(X) ⊆ X for every submodule X ⊆M (we
can say that e is fully invariant).



Application to categories

If M is a left R–module and M = N ⊕H a direct sum decomposition, not necessarily the
category σ[M ] decompose as σ[N ] × σ[H ]. But, for lattice decomposition the following
are equivalent:

(a) M = N ⊕H is a lattice decomposition.

(b) σ[M ] ∼= σ[N ]× σ[H ].

This decomposition can be extended to any Grothendieck category, even if it has no simple
objects.



Application to commutative algebra

Let A be a commutative ring and M be an A–module. If M = N1 ⊕ N2 is a lattice
decomposition, then there is a partition of the support of M :

Supp(M) = Supp(N1)
•
∪ Supp(N2),

and each Supp(Ni) is closed under specializations

If p ⊆ q and p ∈ Supp(Ni) then q ∈ Supp(Ni).

and closed under generalizations

If p ⊆ q and q ∈ Supp(Ni) then p ∈ Supp(Ni).

Indeed, we have a characterization of lattice decompositions. The following statements
are equivalent:

(a) M has a lattice composition.

(b) Supp(M) = C1

•
∪ C2, being Ci closed subsets.



Application to commutative algebra II

The behaviour of lattice decomposition under certain constructions is also of interest. Let
us show a list of cases:

(1) Lattice decomposition is preserves under localizations; this is because for any prime
ideal p we have thar either (N1)p = 0 or (N2)p = 0.

(2) If A −→ B is a ring map and BN a B–module, and AN has a lattice decomposi-
tion, then BN has a lattice decomposition. On the other hand, if BN has a lattice
decomposition, not necessarily AN has one.

(3) If A −→ B is an integral extension and BN has a lattice decomposition, then AN has
one.

(4) If A −→ B is (faithfully) flat and AM is a has a lattice decomposition, then B⊗AM
has a lattice decomposition.



2 Gradual modules

Let P be a poset, with minimum element 0; it is directed if for any a, b ∈ P there exists
c ∈ P such that a ≤ c and b ≤ c.

We build a category, P whose objects are the elements of P . For any a, b ∈ P we define

HomP(a, b) =

{
{0a,b, fa,b}, if a ≤ b,
{0a,b}, otherwise,

with composition and addition given, for any a, b, c ∈ P , whenever a ≤ b ≤ c, by the
rules:

0b,c0a,b = 0a,c 0b,cfa,b = 0a,c;
fb,c0a,b = 0a,c fb,cfa,b = fa,c;

0a,b + 0a,b = 0a,b 0a,b + fa,b = 0a,b;
fa,b + 0a,b = 0a,b fa,b + fa,b = fa,b.



Let A be a commutative ring, it is possible to modify the above category P to get a new
preadditive A–category, also denoted by P , in defining

HomP(a, b) =

{
{nfa,b | n ∈ A} = Afa,b, if a ≤ b
{0a,b}, otherwise,

identifying 0a,b with 0fa,b, and n0a,b, for any n ∈ A, with addition defined following the
addition in A, and composition using the former composition rules.

P is a preadditive A–category.



Let F : P −→ A−Mod be an A–additive functor, a left P–module, and consider the
family {F (a) | a ∈ P}, and, for any a, b ∈ P the map F (fa,b) : F (a) −→ F (b), whenever
it exists; in this case we have a directed system of A–modules:

({F (a) | a ∈ P}, {F (fa,b) | a ≤ b}).

The existence of the direct limits in A−Mod is assured, hence we have an A–module:
lim−→F , and homomorphisms, say qa : F (a) −→ lim−→F , such that the following diagram
commutes, for every pair a ≤ b.
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fa,b, whenever a ≤ b, is an epimorphism and a monomorphism in P .

Let x ∈ P , if we consider the P–module HomP(x,−), we have a module map (fa,b)∗ :
HomP(x, a) −→ HomP(x, b) which is a monomorphism. In general, (fa,b)∗ is not an
epimorphism as if a ≤ b and 0x,b 6= f ∈ HomP(x, b), then x ≤ b, but it may be x � a,
hence HomP(x, a) = {0x,a}. Also we consider the right P–module HomP(−, x).

In (1), taking F = HomP(x,−), every map F (fa,b) is a monomorphism. Hence each map
qa is a monomorphism, i.e., each HomP(x, a) is a submodule of lim−→HomP(x,−).

The construction of HomP(x,−) implies that we may identify HomP(x, a) and Afx,a, both
of them to be isomorphic to A, as A–modules. Otherwise, if f ∈ HomP(x, a), there exists
n ∈ A such that f = nfx,a. Hence, if x ≤ a, then (fx,a)∗ : HomP(x, x) −→ HomP(x, a),
and f = nfx,a = nfx,afx,x = ffx,x = f · fx,x. Hence, fx,x generates HomP(x,−).

Each HomP(x,−) is a cyclic P–module with generator fx,x.



In the category P−Mod we collect in a class all P–modules satisfying the property that
each map qα is a monomorphism. Let F be a P–module, we say F is torsionfree if
F (fa,b) is a monomorphism for every a ≤ b, and denote by J the class of all torsionfree
P–modules.

The class J satisfies the following properties:

(1) It is closed under monomorphisms.

(2) It is closed under direct sums and direct products.

(3) It is closed under group–extension.

In particular, the class J is the torsionfree class of a torsion theory in P−Mod.



To find this torsion theory, for any P–module, F , and any a ∈ P , we define

η(F )(a) = {u ∈ F (a) | exists b ∈ P, a ≤ b, such that F (fa,b)(u) = 0}.

η(F ) is a submodule of F , and F/η(F ) is torsionfree.

A P–module F such that F = η(F ) is called a torsion P–module. We may characterize
the P–modules which are torsion:

A P–module F is torsion (F = η(F )) if, and only if, lim−→F = 0.

The associated Gabriel filter is

L(a) = {a ⊆ HomP(a,−) | lim−→Hom(a,−) = lim−→ a}.



Let F ∈ J be a torsionfree P–module, for any a ∈ P we define

F d(0) = F (0),
F d(a) =

∑
{F (b) | b < a}, if a 6= 0,

where this sum is in lim−→F .

Let F be a torsionfree P–module, then F d defines a functor from P to A−Mod, hence
a P–module, and a submodule of F which is also torsionfree.

This means that the operator d : J −→ J , defined by d(F ) = F d, is an interior
operator. Indeed, it satisfies the statements in the following Lemma.

(1) d(F ) ⊆ F for any F ∈ J .

(2) d(F1) ⊆ d(F2) whenever F1 ⊆ F2, for any F1, F2 ∈ J .

(3) d(F ) = dd(F ) for any F ∈ J .



A torsionfree P–module is d–open if d(F ) = F .

Let us show some arithmetical properties of this interior operator, with respect to sub-
modules.

(1) Let {Fi | i ∈ I} be a family of torsionfree submodules of a P–module F , then(∑
i

Fi

)d

=
∑
i

F d
i .

As a submodule of F d. Thus, the class of d–open submodules is closed under sums.
(2) Let F1, F2 ⊆ F be torsionfree submodules of a P–module F , then

(F1 ∩ F2)d = F d
1 ∩ F d

2 .

Thus, the class of d–open submodules is closed under finite intersections.
(3) Let a be a torsionfree left ideal, and G ⊆ F be a submodule of a torsionfree P–module

F , then
(aG)d = adGd.

Thus, the class of d–open left ideals is closed under products.



Let A be a commutative, a fuzzy subset µ is a fuzzy ideal if for any x, y ∈ A we have:

(1) µ(x− y) ≥ min{µ(x), µ(y)},
(2) µ(xy) ≥ max{µ(x), µ(y)} and

(3) µ(0) 6= 0, to avoid the trivial case.

If µ is a fuzzy ideal, then µ(0) ≥ µ(x) for any x ∈ A.

For any α ∈ [0, 1], the α–level and strong α–level of a fuzzy ideal µ are defined as:

µα = {x ∈ A | µ(x) ≥ α},
µ̃α = {x ∈ A | µ(x) > α}.

Observe that µ0 = A; for that reason we shall use α–levels with α ∈ (0, 1].

If µ is a fuzzy ideal, if, and only if, µα and µ̃α are ideals for every 0 ≤ α ≤ µ(0).



Let µ be a fuzzy ideal of a ring A; if µ(x) = µ(y) = µ(0), then µ(x− y) = µ(0).

The problem of working with algebraic operations of fuzzy ideals is hard; if µ1 and µ2 are
fuzzy ideals, then µ1+µ2 non–necessarily coincides with the smallest fuzzy ideal containing
µ1 and µ2; one condition in order to have this property is that µ1(0) = µ2(0).

A similar problem arise when associating a right P–module to a fuzzy ideal µ. The natural
candidate is σ(µ), defined σ(µ)(α) = µα = {x ∈ A | µ(x) ≥ α}, the α–level of µ,
which is empty if α > µ(0).

This second problem can be easily solved if we put σ(µ)(α) = {0} whenever α > µ(0),
and this means that a plethora of fuzzy ideals µ have associated the same gradual right
ideal: exactly those which coincides in A \ {0}. To organize all fuzzy ideals we may define
an equivalence relation ∼ on fuzzy ideals by µ1 ∼ µ2 if µ1(x) = µ2(x) for any 0 6= x ∈ A.



Observe that in the equivalence class [µ] of µ there exists exactly one element, that at-

tending to µ is denoted by µ0, such that µ0(0) = 1, i.e., µ0(x) =

{
µ(x), if x 6= 0,
1, if x = 0.

Let µ be a fuzzy ideal of a ring A, then µ0 is a fuzzy ideal.

As a consequence we may define a new sum operation on fuzzy ideals using equivalence
classes: [µ1] + [µ2] = [µ0

1 + µ0
2]. Be careful, as the map (−)0 is not necessarily a homo-

morphism with respect to the sum of fuzzy ideals. If necessary, either we avoid the use
of parenthesis, or we adorne the sum symbol, as [+], to indicate we are working with
equivalence classes. For two fuzzy ideals µ1 and µ2 simply we write

([µ1] + [µ2])(x) = (µ1[+]µ2)(x) = Sup{µ0
1(y) ∧ µ0

2(z) | y + z = x}.

In this case, associated to every class [µ], there exists a right P–module σ(µ) which is
a submodule of A, the constant right P–module equal to A, which is identify with the
contravariant functor HomP(−, 1).



The maps µ 7→ σ(µ) and σ 7→ µ(σ) establish a bijective correspondence between

(i) Equivalence classes of fuzzy ideals and

(ii) Decreasing gradual right ideals (open right ideals in the general theory).

But this correspondence doesn’t respect the arithmetical operations. Thus we consider
strong α–levels and obtain:

The maps µ 7→ σ̃(µ) and σ 7→ µ̃(σ) establish a bijective correspondence, that maintain
the sum and intersections, between

(i) Equivalence classes of fuzzy ideals and

(ii) Decreasing gradual right ideals (open right ideals in the general theory).

This theory can be extended to modules, providing a categorical framework for studying
fuzzy modules.


