Pretorsion theories in arbitrary categories

Alberto Facchini
Università di Padova

Almería, 15 May 2019

Dedicated to Blas,...

Dedicated to Blas,...

who worked a lot on torsion theories

Dedicated to Blas,...

who worked a lot on torsion theories, in particular in the years 1981-1995.

Based on three joint papers

Based on three joint papers,
A. Facchini and C. Finocchiaro, Pretorsion theories, stable category and preordered sets, submitted for publication, arXiv:1902.06694, 2019.

Based on three joint papers,
A. Facchini and C. Finocchiaro, Pretorsion theories, stable category and preordered sets, submitted for publication, arXiv:1902.06694, 2019.
A. Facchini, C. Finocchiaro and M. Gran, Pretorsion theories in general categories, work in progress, 2019.

Based on three joint papers,
A. Facchini and C. Finocchiaro, Pretorsion theories, stable category and preordered sets, submitted for publication, arXiv:1902.06694, 2019.
A. Facchini, C. Finocchiaro and M. Gran, Pretorsion theories in general categories, work in progress, 2019.
A. Facchini and L. Heidari Zadeh, An extension of properties of symmetric group to monoids and a pretorsion theory in the category of mappings, to appear, arXiv:1902.05507, 2019.

From the symmetric group S_{n} to the monoid M_{n}

Several properties we teach every year to our first year students about the symmetric group S_{n} can be easily extended or adapted to the monoid M_{n}.

From the symmetric group S_{n} to the monoid M_{n}

Several properties we teach every year to our first year students about the symmetric group S_{n} can be easily extended or adapted to the monoid M_{n}.

Here $n \geq 1$ denotes a fixed integer,

From the symmetric group S_{n} to the monoid M_{n}

Several properties we teach every year to our first year students about the symmetric group S_{n} can be easily extended or adapted to the monoid M_{n}.

Here $n \geq 1$ denotes a fixed integer, X will be the set $\{1,2,3, \ldots, n\}$,

From the symmetric group S_{n} to the monoid M_{n}

Several properties we teach every year to our first year students about the symmetric group S_{n} can be easily extended or adapted to the monoid M_{n}.

Here $n \geq 1$ denotes a fixed integer, X will be the set $\{1,2,3, \ldots, n\}$,
S_{n} is the group of all bijections (permutations) $f: X \rightarrow X$,

From the symmetric group S_{n} to the monoid M_{n}

Several properties we teach every year to our first year students about the symmetric group S_{n} can be easily extended or adapted to the monoid M_{n}.

Here $n \geq 1$ denotes a fixed integer, X will be the set $\{1,2,3, \ldots, n\}$,
S_{n} is the group of all bijections (permutations) $f: X \rightarrow X$, and M_{n} is the monoid of all mappings $f: X \rightarrow X$.

From the symmetric group S_{n} to the monoid M_{n}

Several properties we teach every year to our first year students about the symmetric group S_{n} can be easily extended or adapted to the monoid M_{n}.

Here $n \geq 1$ denotes a fixed integer, X will be the set $\{1,2,3, \ldots, n\}$,
S_{n} is the group of all bijections (permutations) $f: X \rightarrow X$, and M_{n} is the monoid of all mappings $f: X \rightarrow X$.

The operation in both cases is composition of mappings.

Standard properties of S_{n}

(1) Every permutation can be written as a product of disjoint cycles

Standard properties of S_{n}

(1) Every permutation can be written as a product of disjoint cycles, in a unique way up to the order of factors.

Standard properties of S_{n}

(1) Every permutation can be written as a product of disjoint cycles, in a unique way up to the order of factors.
(2) Disjoint cycles permute.

Standard properties of S_{n}

(1) Every permutation can be written as a product of disjoint cycles, in a unique way up to the order of factors.
(2) Disjoint cycles permute.
(3) Every permutation can be written as a product of transpositions.

Standard properties of S_{n}

(1) Every permutation can be written as a product of disjoint cycles, in a unique way up to the order of factors.
(2) Disjoint cycles permute.
(3) Every permutation can be written as a product of transpositions.
(4) There is a group morphism sgn: $S_{n} \rightarrow\{1,-1\}$. (The number $\operatorname{sgn}(f)$ is called the sign of the permutation f.)

Standard properties of S_{n}

(1) Every permutation can be written as a product of disjoint cycles, in a unique way up to the order of factors.
(2) Disjoint cycles permute.
(3) Every permutation can be written as a product of transpositions.
(4) There is a group morphism sgn: $S_{n} \rightarrow\{1,-1\}$. (The number $\operatorname{sgn}(f)$ is called the sign of the permutation f.)
(5) For $n \geq 2, S_{n}$ is the semidirect product of A_{n} and any subgroup of S_{n} generated by a transposition.

Every permutation is a product of disjoint cycles

Given any mapping $f: X \rightarrow X$, it is possible to associate to f a directed graph $G_{f}^{d}=\left(X, E_{f}^{d}\right)$ (the graph associated to the function f), having X as a set of vertices and $E_{f}^{d}:=\{(i, f(i)) \mid i \in X\}$ as a set of arrows. Hence G_{f}^{d} has n vertices and n arrows, one arrow from i to $f(i)$ for every $i \in X$. In the directed graph G_{f}^{d}, every vertex has outdegree 1.

Every permutation is a product of disjoint cycles

If $f: X \rightarrow X$ is a permutation, every vertex in G_{f}^{d} has outdegree 1 and indegree 1 . Any finite directed connected graph in which every vertex has outdegree 1 and indegree 1 is a cycle. Therefore the graph G_{f}^{d}, disjoint union of its connected components, is a disjoint union of cycles in a unique way. Hence any permutation f is a product of disjoint cycles.

For an arbitrary mapping $f: X \rightarrow X \ldots$

For any mapping $f: X \rightarrow X$, we can argue in the same way, but instead of a disjoint union of cycles, we get as G_{f}^{d} a disjoint union of forests on cycles:

A forest on a cycle

An arbitrary mapping $f: X \rightarrow X \ldots$

Any mapping $f: X \rightarrow X$ consists a lower part (a disjoint union of cycles, i.e., a bijection) and an upper part (a forest).

For a mapping $f: X=\{1,2,3, \ldots, n\} \rightarrow X=\{1,2,3, \ldots, n\}$:
(1) f is a bijection if and only if $f^{n!}=\iota_{X}$.
(2) The graph G_{f}^{d} is a forest (i.e., the only cycles on G_{f}^{d} are the loops) if and only if $f^{n}=f^{n+1}$.

The category of mappings \mathcal{M}

Let \mathcal{M} be the category whose objects are all pairs (X, f), where $X=\{1,2,3, \ldots, n\}$ for some $n \geq 1$ and $f: X \rightarrow X$ is a mapping.

The category of mappings \mathcal{M}

Let \mathcal{M} be the category whose objects are all pairs (X, f), where $X=\{1,2,3, \ldots, n\}$ for some $n \geq 1$ and $f: X \rightarrow X$ is a mapping. Hence \mathcal{M} will be a small category with countably many objects.

The category of mappings \mathcal{M}

Let \mathcal{M} be the category whose objects are all pairs (X, f), where $X=\{1,2,3, \ldots, n\}$ for some $n \geq 1$ and $f: X \rightarrow X$ is a mapping. Hence \mathcal{M} will be a small category with countably many objects.
A morphism $g:(X, f) \rightarrow\left(X^{\prime}, f^{\prime}\right)$ in \mathcal{M} is any mapping $g: X \rightarrow X^{\prime}$ for which the diagram

commutes.

The category of mappings \mathcal{M}

The category \mathcal{M} can also be seen from the point of view of Universal Algebra.

The category of mappings \mathcal{M}

The category \mathcal{M} can also be seen from the point of view of Universal Algebra. It is equivalent to the category (variety) of all finite algebras (X, f) with one unary operation f and no axioms.

The category of mappings \mathcal{M}

The category \mathcal{M} can also be seen from the point of view of Universal Algebra. It is equivalent to the category (variety) of all finite algebras (X, f) with one unary operation f and no axioms. The morphisms in the category \mathcal{M} are exactly the homomorphisms in the sense of Universal Algebra.

The category of mappings \mathcal{M}

The category \mathcal{M} can also be seen from the point of view of Universal Algebra. It is equivalent to the category (variety) of all finite algebras (X, f) with one unary operation f and no axioms. The morphisms in the category \mathcal{M} are exactly the homomorphisms in the sense of Universal Algebra.

The product decomposition of f as a product of disjoint forests on cycles corresponds to the coproduct decomposition in this category \mathcal{M} as a coproduct of indecomposable algebras.

The category of mappings \mathcal{M}

The category \mathcal{M} can also be seen from the point of view of Universal Algebra. It is equivalent to the category (variety) of all finite algebras (X, f) with one unary operation f and no axioms. The morphisms in the category \mathcal{M} are exactly the homomorphisms in the sense of Universal Algebra.

The product decomposition of f as a product of disjoint forests on cycles corresponds to the coproduct decomposition in this category \mathcal{M} as a coproduct of indecomposable algebras.

A congruence on (X, f), in the sense of Universal Algebra, is an equivalence relation \sim on the set X such that, for all $x, y \in X$, $x \sim y$ implies $f(x) \sim f(y)$.

The pretorsion theory $(\mathcal{C}, \mathcal{F})$ on \mathcal{M}

Now let \mathcal{C} be the full subcategory of \mathcal{M} whose objects are the pairs (X, f) with $f: X \rightarrow X$ a bijection.

The pretorsion theory $(\mathcal{C}, \mathcal{F})$ on \mathcal{M}

Now let \mathcal{C} be the full subcategory of \mathcal{M} whose objects are the pairs (X, f) with $f: X \rightarrow X$ a bijection. Let \mathcal{F} be the full subcategory of \mathcal{M} whose objects are the pairs (X, f) where f is a mapping whose graph is a forest.

The pretorsion theory $(\mathcal{C}, \mathcal{F})$ on \mathcal{M}

Now let \mathcal{C} be the full subcategory of \mathcal{M} whose objects are the pairs (X, f) with $f: X \rightarrow X$ a bijection. Let \mathcal{F} be the full subcategory of \mathcal{M} whose objects are the pairs (X, f) where f is a mapping whose graph is a forest. (Here, \mathcal{C} stands for cycles and \mathcal{F} stands for forests, or torsion-free objects, as we will see.)

The pretorsion theory $(\mathcal{C}, \mathcal{F})$ on \mathcal{M}

Now let \mathcal{C} be the full subcategory of \mathcal{M} whose objects are the pairs (X, f) with $f: X \rightarrow X$ a bijection. Let \mathcal{F} be the full subcategory of \mathcal{M} whose objects are the pairs (X, f) where f is a mapping whose graph is a forest. (Here, \mathcal{C} stands for cycles and \mathcal{F} stands for forests, or torsion-free objects, as we will see.)
Clearly, an object of \mathcal{M} is an object both in \mathcal{C} and in \mathcal{F} if and only if it is of the form $\left(X, \iota_{X}\right)$, where $\iota_{X}: X \rightarrow X$ is the identity mapping.

The pretorsion theory $(\mathcal{C}, \mathcal{F})$ on \mathcal{M}

Now let \mathcal{C} be the full subcategory of \mathcal{M} whose objects are the pairs (X, f) with $f: X \rightarrow X$ a bijection. Let \mathcal{F} be the full subcategory of \mathcal{M} whose objects are the pairs (X, f) where f is a mapping whose graph is a forest. (Here, \mathcal{C} stands for cycles and \mathcal{F} stands for forests, or torsion-free objects, as we will see.)
Clearly, an object of \mathcal{M} is an object both in \mathcal{C} and in \mathcal{F} if and only if it is of the form $\left(X, \iota_{X}\right)$, where $\iota_{X}: X \rightarrow X$ is the identity mapping. We will call these objects $\left(X, \iota_{X}\right)$ the trivial objects of \mathcal{M}.

The pretorsion theory $(\mathcal{C}, \mathcal{F})$ on \mathcal{M}

Now let \mathcal{C} be the full subcategory of \mathcal{M} whose objects are the pairs (X, f) with $f: X \rightarrow X$ a bijection. Let \mathcal{F} be the full subcategory of \mathcal{M} whose objects are the pairs (X, f) where f is a mapping whose graph is a forest. (Here, \mathcal{C} stands for cycles and \mathcal{F} stands for forests, or torsion-free objects, as we will see.)
Clearly, an object of \mathcal{M} is an object both in \mathcal{C} and in \mathcal{F} if and only if it is of the form $\left(X, \iota_{X}\right)$, where $\iota_{X}: X \rightarrow X$ is the identity mapping. We will call these objects $\left(X, \iota_{X}\right)$ the trivial objects of \mathcal{M}. Let Triv be the full subcategory of \mathcal{M} whose objects are all trivial objects $\left(X, \iota_{X}\right)$.

The pretorsion theory $(\mathcal{C}, \mathcal{F})$ on \mathcal{M}

Now let \mathcal{C} be the full subcategory of \mathcal{M} whose objects are the pairs (X, f) with $f: X \rightarrow X$ a bijection. Let \mathcal{F} be the full subcategory of \mathcal{M} whose objects are the pairs (X, f) where f is a mapping whose graph is a forest. (Here, \mathcal{C} stands for cycles and \mathcal{F} stands for forests, or torsion-free objects, as we will see.)
Clearly, an object of \mathcal{M} is an object both in \mathcal{C} and in \mathcal{F} if and only if it is of the form $\left(X, \iota_{X}\right)$, where $\iota_{X}: X \rightarrow X$ is the identity mapping. We will call these objects $\left(X, \iota_{X}\right)$ the trivial objects of \mathcal{M}. Let Triv be the full subcategory of \mathcal{M} whose objects are all trivial objects $\left(X, \iota_{X}\right)$.

Call a morphism $g:(X, f) \rightarrow\left(X^{\prime}, f^{\prime}\right)$ in \mathcal{M} trival if it factors through a trivial object. That is, if there exists a trivial object $\left(Y, \iota_{Y}\right)$ and morphisms $h:(X, f) \rightarrow\left(Y, \iota_{Y}\right)$ and $\ell:\left(Y, \iota_{Y}\right) \rightarrow\left(X^{\prime}, f^{\prime}\right)$ in \mathcal{M} such that $g=\ell h$.

The pretorsion theory $(\mathcal{C}, \mathcal{F})$ on \mathcal{M}

Proposition

If (X, f) and $\left(X^{\prime}, f^{\prime}\right)$ are objects of \mathcal{M}, where f is a bijection and the graph of f^{\prime} is a forest, then every morphism
$g:(X, f) \rightarrow\left(X^{\prime}, f^{\prime}\right)$ is trivial.

The pretorsion theory $(\mathcal{C}, \mathcal{F})$ on \mathcal{M}

Proposition

If (X, f) and $\left(X^{\prime}, f^{\prime}\right)$ are objects of \mathcal{M}, where f is a bijection and the graph of f^{\prime} is a forest, then every morphism
$g:(X, f) \rightarrow\left(X^{\prime}, f^{\prime}\right)$ is trivial.

We will see that for every object (X, f) in \mathcal{M} there is a "short exact sequence"

$$
\begin{equation*}
\left(A_{0},\left.f\right|_{A_{0}} ^{A_{0}}\right) \stackrel{\varepsilon}{\hookrightarrow}(X, f) \xrightarrow{\pi}(X / \sim, \bar{f}) \tag{2}
\end{equation*}
$$

with $\left(A_{0},\left.f\right|_{A_{0}} ^{A_{0}}\right) \in \mathcal{C}$ and $(X / \sim, \bar{f}) \in \mathcal{F}$.

An example: an object (X, f) in \mathcal{M}

The partition of X modulo \sim.

The torsion-free quotient $(X / \sim, \bar{f})$ of $(X . f)$ modulo \sim.

Figure: The quotient set X / \sim.

Preorders, partial orders and equivalence relations

A preorder on a set A is a relation ρ on A that is reflexive and transitive.

Preorders, partial orders and equivalence relations

A preorder on a set A is a relation ρ on A that is reflexive and transitive.

Main examples of preorders on A :

Preorders, partial orders and equivalence relations

A preorder on a set A is a relation ρ on A that is reflexive and transitive.

Main examples of preorders on A :
(1) partial orders (i.e., ρ is also antisymmetric).

Preorders, partial orders and equivalence relations

A preorder on a set A is a relation ρ on A that is reflexive and transitive.

Main examples of preorders on A :
(1) partial orders (i.e., ρ is also antisymmetric).
(2) equivalence relations (i.e., ρ is also symmetric).

Proposition

Let A be a set. There is a one-to-one correspondence between the set of all preorders ρ on A and the set of all pairs (\sim, \leq), where \sim is an equivalence relation on A and \leq is a partial order on the quotient set A / \sim.

Proposition

Let A be a set. There is a one-to-one correspondence between the set of all preorders ρ on A and the set of all pairs (\sim, \leq), where \sim is an equivalence relation on A and \leq is a partial order on the quotient set A / \sim.
The correspondence associates to every preorder ρ on A the pair $\left(\simeq_{\rho}, \leq_{\rho}\right)$, where \simeq_{ρ} is the equivalence relation defined, for every $a, b \in A$, by $a \simeq_{\rho} b$ if $a \rho b$ and $b \rho a$, and \leq_{ρ} is the partial order on A / \simeq_{ρ} defined, for every $a, b \in A$, by $[a]_{\simeq_{\rho}} \leq[b]_{\simeq_{\rho}}$ if $a \rho b$.

Proposition

Let A be a set. There is a one-to-one correspondence between the set of all preorders ρ on A and the set of all pairs (\sim, \leq), where \sim is an equivalence relation on A and \leq is a partial order on the quotient set A / \sim.
The correspondence associates to every preorder ρ on A the pair $\left(\simeq_{\rho}, \leq_{\rho}\right)$, where \simeq_{ρ} is the equivalence relation defined, for every $a, b \in A$, by $a \simeq_{\rho} b$ if $a \rho b$ and $b \rho a$, and \leq_{ρ} is the partial order on A / \simeq_{ρ} defined, for every $a, b \in A$, by $[a]_{\simeq_{\rho}} \leq[b]_{\simeq_{\rho}}$ if $a \rho b$.
Conversely, for any pair (\sim, \leq) with \sim an equivalence relation on A and \leq a partial order on A / \sim, the corresponding preorder $\rho_{(\sim, \leq)}$ on A is defined, for every $a, b \in A$, by $a \rho_{(\sim, \leq)} b$ if $[a]_{\sim} \leq[b]_{\sim}$.
A a set.

$$
\begin{gathered}
\{\rho \mid \rho \text { is a preorder on } A\} \\
\{(\sim, \leq) \mid \sim \text { is an equivalence relation on } A \\
\text { and } \leq \text { is a partial order on } A / \sim\}
\end{gathered}
$$

A a set.
$\{\rho \mid \rho$ is a preorder on $A\}$

$$
\imath_{1-1}
$$

$\{(\sim, \leq) \mid \sim$ is an equivalence relation on A and \leq is a partial order on $A / \sim\}$
ρ, preorder on A
\downarrow
$\left(\simeq_{\rho}, \leq_{\rho}\right)$, where \simeq_{ρ} is the equivalence relation on A defined, for every $a, b \in A$, by $a \simeq_{\rho} b$ if $a \rho b$ and $b \rho a$, and \leq_{ρ} is the partial order on A / \sim defined, for every $a, b \in A$, by $[a]_{\simeq_{\rho}} \leq[b]_{\simeq_{\rho}}$ if $a \rho b$.

The category of preordered sets

Let Preord be the category of all non-empty preordered sets.

The category of preordered sets

Let Preord be the category of all non-empty preordered sets. Objects: all pairs (A, ρ), where A is a non-empty set and ρ is a preorder on A.

The category of preordered sets

Let Preord be the category of all non-empty preordered sets. Objects: all pairs (A, ρ), where A is a non-empty set and ρ is a preorder on A.
Morphisms $f:(A, \rho) \rightarrow\left(A^{\prime}, \rho^{\prime}\right)$: all mappings f of A into A^{\prime} such that $a \rho b$ implies $f(a) \rho^{\prime} f(b)$ for all $a, b \in A$.

The category of preordered sets

Let Preord be the category of all non-empty preordered sets. Objects: all pairs (A, ρ), where A is a non-empty set and ρ is a preorder on A.
Morphisms $f:(A, \rho) \rightarrow\left(A^{\prime}, \rho^{\prime}\right)$: all mappings f of A into A^{\prime} such that a ρb implies $f(a) \rho^{\prime} f(b)$ for all $a, b \in A$.

ParOrd: full subcategory of Preord whose objects are all partially ordered sets $(A, \rho), \rho$ a partial order.

The category of preordered sets

Let Preord be the category of all non-empty preordered sets. Objects: all pairs (A, ρ), where A is a non-empty set and ρ is a preorder on A.
Morphisms $f:(A, \rho) \rightarrow\left(A^{\prime}, \rho^{\prime}\right)$: all mappings f of A into A^{\prime} such that $a \rho b$ implies $f(a) \rho^{\prime} f(b)$ for all $a, b \in A$.

ParOrd: full subcategory of Preord whose objects are all partially ordered sets $(A, \rho), \rho$ a partial order.

Equiv: full subcategory of Preord whose objects are all preordered sets (A, \sim) with \sim an equivalence relation on A.

Trivial objects, trivial morphisms

Triv:=Preord \cap Equiv, full subcategory of Preord whose objects are all the objects of the form $(A,=)$, where $=$ denotes the equality relation on A. We will call them the trivial objects of Preord.

Trivial objects, trivial morphisms

Triv: $=$ Preord \cap Equiv, full subcategory of Preord whose objects are all the objects of the form $(A,=)$, where $=$ denotes the equality relation on A. We will call them the trivial objects of Preord. Hence Triv is a category isomorphic to the category of all non-empty sets.

Trivial objects, trivial morphisms

Triv:=Preord \cap Equiv, full subcategory of Preord whose objects are all the objects of the form $(A,=)$, where $=$ denotes the equality relation on A. We will call them the trivial objects of Preord. Hence Triv is a category isomorphic to the category of all non-empty sets.

A morphism $f:(A, \rho) \rightarrow\left(A^{\prime}, \rho^{\prime}\right)$ in Preord is trival if it factors through a trivial object, that is, if there exist a trivial object $(B,=)$ and morphisms $g:(A, \rho) \rightarrow(B,=)$ and $h:(B,=) \rightarrow\left(A^{\prime}, \rho^{\prime}\right)$ in Preord with $f=h g$.

Prekernels

Let $f: A \rightarrow A^{\prime}$ be a morphism in Preord. We say that a morphism $k: X \rightarrow A$ in Preord is a prekernel

Prekernels

Let $f: A \rightarrow A^{\prime}$ be a morphism in Preord. We say that a morphism $k: X \rightarrow A$ in Preord is a prekernel of f if the following properties are satisfied:

1. $f k$ is a trivial morphism.

Prekernels

Let $f: A \rightarrow A^{\prime}$ be a morphism in Preord. We say that a morphism $k: X \rightarrow A$ in Preord is a prekernel of f if the following properties are satisfied:

1. $f k$ is a trivial morphism.
2. Whenever $\lambda: Y \rightarrow A$ is a morphism in Preord and $f \lambda$ is trivial, then there exists a unique morphism $\lambda^{\prime}: Y \rightarrow X$ in Preord such that $\lambda=k \lambda^{\prime}$.

Prekernel of a morphism $f: A \rightarrow A^{\prime}$ in Preord

For every mapping $f: A \rightarrow A^{\prime}$, the equivalence relation \sim_{f} on A, associated to f, is defined, for every $a, b \in A$, by $a \sim_{f} b$ if $f(a)=f(b)$.

Prekernel of a morphism $f: A \rightarrow A^{\prime}$ in Preord

For every mapping $f: A \rightarrow A^{\prime}$, the equivalence relation \sim_{f} on A, associated to f, is defined, for every $a, b \in A$, by $a \sim_{f} b$ if $f(a)=f(b)$.

Proposition

Let $f:(A, \rho) \rightarrow\left(A^{\prime}, \rho^{\prime}\right)$ be a morphism in Preord. Then a prekernel of f is the morphism $k:\left(A, \rho \cap \sim_{f}\right) \rightarrow(A, \rho)$, where k the identity mapping and \sim_{f} is the equivalence relation on A associated to f.

Precokernels

Let $f: A \rightarrow A^{\prime}$ be a morphism in Preord. A precokernel of f is a morphism $p: A^{\prime} \rightarrow X$ such that:

1. $p f$ is a trivial map.
2. Whenever $\lambda: A^{\prime} \rightarrow Y$ is a morphism such that λf is trivial, then there exists a unique morphism $\lambda_{1}: X \rightarrow Y$ with $\lambda=\lambda_{1} p$.

Precokernels

Let $f: A \rightarrow A^{\prime}$ be a morphism in Preord. A precokernel of f is a morphism $p: A^{\prime} \rightarrow X$ such that:

1. $p f$ is a trivial map.
2. Whenever $\lambda: A^{\prime} \rightarrow Y$ is a morphism such that λf is trivial, then there exists a unique morphism $\lambda_{1}: X \rightarrow Y$ with $\lambda=\lambda_{1} p$.

Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be morphisms in Preord. We say that $X \xrightarrow{f} Y \xrightarrow{g} Z$ is a short preexact sequence in Preord if f is a prekernel of g and g is a precokernel of f.

A canonical short preexact sequence for every (A, ρ) in Preord.

Let A be any non-empty set, let ρ be a preorder on A and let \simeq_{ρ} be the equivalence relation on A defined by $a \simeq{ }_{\rho} b$ if $a \rho b$ and $b \rho a$ and \leq_{ρ} is the partial order on A / \simeq_{ρ} induced by ρ, then

$$
\left(A, \simeq_{\rho}\right) \xrightarrow{k}(A, \rho) \xrightarrow{\pi}\left(A / \simeq_{\rho}, \leq_{\rho}\right)
$$

is a short preexact sequence in Preord with $\left(A, \simeq_{\rho}\right) \in$ Equiv and $\left(A / \simeq_{\rho}, \leq_{\rho}\right) \in$ ParOrd.

Pretorsion theories

Fix an arbitrary category \mathcal{C} and a non-empty class \mathcal{Z} of objects of \mathcal{C}.

Pretorsion theories

Fix an arbitrary category \mathcal{C} and a non-empty class \mathcal{Z} of objects of \mathcal{C}. For every pair A, A^{\prime} of objects of \mathcal{C}, we indicate by $\operatorname{Triv}_{\mathcal{Z}}(A, B)$ the set of all morphisms in \mathcal{C} that factor through an object of \mathcal{Z}.

Pretorsion theories

Fix an arbitrary category \mathcal{C} and a non-empty class \mathcal{Z} of objects of \mathcal{C}. For every pair A, A^{\prime} of objects of \mathcal{C}, we indicate by $\operatorname{Triv}_{\mathcal{Z}}(A, B)$ the set of all morphisms in \mathcal{C} that factor through an object of \mathcal{Z}. We will call these morphisms \mathcal{Z}-trivial.

Pretorsion theories

Fix an arbitrary category \mathcal{C} and a non-empty class \mathcal{Z} of objects of \mathcal{C}. For every pair A, A^{\prime} of objects of \mathcal{C}, we indicate by $\operatorname{Triv}_{\mathcal{Z}}(A, B)$ the set of all morphisms in \mathcal{C} that factor through an object of \mathcal{Z}. We will call these morphisms \mathcal{Z}-trivial.

Let $f: A \rightarrow A^{\prime}$ be a morphism in \mathcal{C}. We say that a morphism $\varepsilon: X \rightarrow A$ in \mathcal{C} is a \mathcal{Z}-prekernel of f if the following properties are satisfied:

1. $f \varepsilon$ is a \mathcal{Z}-trivial morphism.
2. Whenever $\lambda: Y \rightarrow A$ is a morphism in \mathcal{C} and $f \lambda$ is \mathcal{Z}-trivial, then there exists a unique morphism $\lambda^{\prime}: Y \rightarrow X$ in \mathcal{C} such that $\lambda=\varepsilon \lambda^{\prime}$.

Pretorsion theories

Proposition

Let $f: A \rightarrow A^{\prime}$ be a morphism in \mathcal{C} and let $\varepsilon: X \rightarrow A$ be a \mathcal{Z}-prekernel for f. Then the following properties hold.

1. ε is a monomorphism.
2. If $\lambda: Y \rightarrow A$ is any other \mathcal{Z}-prekernel of f, then there exists a unique isomorphism $\lambda^{\prime}: Y \rightarrow X$ such that $\lambda=\varepsilon \lambda^{\prime}$.

Pretorsion theories

Proposition

Let $f: A \rightarrow A^{\prime}$ be a morphism in \mathcal{C} and let $\varepsilon: X \rightarrow A$ be a \mathcal{Z}-prekernel for f. Then the following properties hold.

1. ε is a monomorphism.
2. If $\lambda: Y \rightarrow A$ is any other \mathcal{Z}-prekernel of f, then there exists a unique isomorphism $\lambda^{\prime}: Y \rightarrow X$ such that $\lambda=\varepsilon \lambda^{\prime}$.

Dually, a \mathcal{Z}-precokernel of f is a morphism $\eta: A^{\prime} \rightarrow X$ such that:

1. ηf is a \mathcal{Z}-trivial morphism.
2. Whenever $\mu: A^{\prime} \rightarrow Y$ is a morphism and μf is \mathcal{Z}-trivial, then there exists a unique morphism $\mu^{\prime}: X \rightarrow Y$ with $\mu=\mu^{\prime} \eta$.

Pretorsion theories

If $\mathcal{C}^{\text {op }}$ is the opposite category of \mathcal{C}, the \mathcal{Z}-precokernel of a morphism $f: A \rightarrow A^{\prime}$ in \mathcal{C} is the \mathcal{Z}-prekernel of the morphism $f: A^{\prime} \rightarrow A$ in $\mathcal{C}^{\mathrm{op}}$.

Pretorsion theories

If $\mathcal{C}^{\text {op }}$ is the opposite category of \mathcal{C}, the \mathcal{Z}-precokernel of a morphism $f: A \rightarrow A^{\prime}$ in \mathcal{C} is the \mathcal{Z}-prekernel of the morphism $f: A^{\prime} \rightarrow A$ in $\mathcal{C}^{\circ \mathrm{p}}$.

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be morphisms in \mathcal{C}. We say that

$$
A \xrightarrow{f} B \xrightarrow{g} C
$$

is a short \mathcal{Z}-preexact sequence in \mathcal{C} if f is a \mathcal{Z}-prekernel of g and g is a \mathcal{Z}-precokernel of f.

Pretorsion theories

If $\mathcal{C}^{\text {op }}$ is the opposite category of \mathcal{C}, the \mathcal{Z}-precokernel of a morphism $f: A \rightarrow A^{\prime}$ in \mathcal{C} is the \mathcal{Z}-prekernel of the morphism $f: A^{\prime} \rightarrow A$ in $\mathcal{C}^{\circ \mathrm{p}}$.

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be morphisms in \mathcal{C}. We say that

$$
A \xrightarrow{f} B \xrightarrow{g} C
$$

is a short \mathcal{Z}-preexact sequence in \mathcal{C} if f is a \mathcal{Z}-prekernel of g and g is a \mathcal{Z}-precokernel of f.

Clearly, if $A \xrightarrow{f} B \xrightarrow{g} C$ is a short \mathcal{Z}-preexact sequence in \mathcal{C}, then
$C \xrightarrow{g} B \xrightarrow{f} A$ is a short \mathcal{Z}-preexact sequence in $\mathcal{C}^{\circ p}$.

Pretorsion theories: definition

Let \mathcal{C} be an arbitrary category. A pretorsion theory $(\mathcal{T}, \mathcal{F})$ for \mathcal{C} consists of two replete ($=$ closed under isomorphism) full subcategories \mathcal{T}, \mathcal{F} of \mathcal{C}, satisfying the following two conditions.

Pretorsion theories: definition

Let \mathcal{C} be an arbitrary category. A pretorsion theory $(\mathcal{T}, \mathcal{F})$ for \mathcal{C} consists of two replete ($=$ closed under isomorphism) full subcategories \mathcal{T}, \mathcal{F} of \mathcal{C}, satisfying the following two conditions.

Set $\mathcal{Z}:=\mathcal{T} \cap \mathcal{F}$.

Pretorsion theories: definition

Let \mathcal{C} be an arbitrary category. A pretorsion theory $(\mathcal{T}, \mathcal{F})$ for \mathcal{C} consists of two replete ($=$ closed under isomorphism) full subcategories \mathcal{T}, \mathcal{F} of \mathcal{C}, satisfying the following two conditions.

Set $\mathcal{Z}:=\mathcal{T} \cap \mathcal{F}$.
(1) $\operatorname{Hom}_{\mathcal{C}}(T, F)=\operatorname{Triv}_{\mathcal{Z}}(T, F)$ for every object $T \in \mathcal{T}, F \in \mathcal{F}$.

Pretorsion theories: definition

Let \mathcal{C} be an arbitrary category. A pretorsion theory $(\mathcal{T}, \mathcal{F})$ for \mathcal{C} consists of two replete ($=$ closed under isomorphism) full subcategories \mathcal{T}, \mathcal{F} of \mathcal{C}, satisfying the following two conditions.

Set $\mathcal{Z}:=\mathcal{T} \cap \mathcal{F}$.
(1) $\operatorname{Hom}_{\mathcal{C}}(T, F)=\operatorname{Triv}_{\mathcal{Z}}(T, F)$ for every object $T \in \mathcal{T}, F \in \mathcal{F}$.
(2) For every object B of \mathcal{C} there is a short \mathcal{Z}-preexact sequence

$$
A \xrightarrow{f} B \xrightarrow{g} C
$$

with $A \in \mathcal{T}$ and $C \in \mathcal{F}$.

Like torsion theories in the abelian case

In the rest of the talk, whenever we will deal with a pretorsion theory $(\mathcal{T}, \mathcal{F})$ for a category \mathcal{C}, the symbol \mathcal{Z} will always indicate the intersection $\mathcal{T} \cap \mathcal{F}$.

Like torsion theories in the abelian case

In the rest of the talk, whenever we will deal with a pretorsion theory $(\mathcal{T}, \mathcal{F})$ for a category \mathcal{C}, the symbol \mathcal{Z} will always indicate the intersection $\mathcal{T} \cap \mathcal{F}$.
Notice that if $(\mathcal{T}, \mathcal{F})$ is a pretorsion theory for a category \mathcal{C}, then $(\mathcal{F}, \mathcal{T})$ turns out to be a pretorsion theory in $\mathcal{C}^{\circ p}$.

Like torsion theories in the abelian case

In the rest of the talk, whenever we will deal with a pretorsion theory $(\mathcal{T}, \mathcal{F})$ for a category \mathcal{C}, the symbol \mathcal{Z} will always indicate the intersection $\mathcal{T} \cap \mathcal{F}$.
Notice that if $(\mathcal{T}, \mathcal{F})$ is a pretorsion theory for a category \mathcal{C}, then $(\mathcal{F}, \mathcal{T})$ turns out to be a pretorsion theory in $\mathcal{C}^{\circ p}$.

Proposition

Let $(\mathcal{T}, \mathcal{F})$ be a pretorsion theory in a category \mathcal{C}, and let X be any object in \mathcal{C}.

1. If $\operatorname{Hom}_{\mathcal{C}}(X, F)=\operatorname{Triv}_{\mathcal{Z}}(X, F)$ for every $F \in \mathcal{F}$, then $X \in \mathcal{T}$.
2. If $\operatorname{Hom}_{\mathcal{C}}(T, X)=\operatorname{Triv}_{\mathcal{Z}}(T, X)$ for every $T \in \mathcal{T}$, then $X \in \mathcal{F}$.

First properties

As a corollary, from Proposition 1.4 we have that given a pretorsion theory $(\mathcal{T}, \mathcal{F})$ in a category \mathcal{C}, any two of the three classes $\mathcal{T}, \mathcal{F}, \mathcal{Z}$ determine the third.

First properties

As a corollary, from Proposition 1.4 we have that given a pretorsion theory $(\mathcal{T}, \mathcal{F})$ in a category \mathcal{C}, any two of the three classes $\mathcal{T}, \mathcal{F}, \mathcal{Z}$ determine the third.

First of all, we have that the short \mathcal{Z}-preexact sequence given in Axiom (2) of the definition of pretorsion theory is uniquely determined, up to isomorphism.

Uniqueness of the short \mathcal{Z}-preexact sequence

Proposition

Let \mathcal{C} be a category and let $(\mathcal{T}, \mathcal{F})$ be a pretorsion theory for \mathcal{C}. If

$$
T \xrightarrow{\varepsilon} A \xrightarrow{\eta} F \quad \text { and } \quad T^{\prime} \xrightarrow{\varepsilon^{\prime}} A \xrightarrow{\eta^{\prime}} F^{\prime}
$$

are \mathcal{Z}-preexact sequences, where $T, T^{\prime} \in \mathcal{T}$ and $F, F^{\prime} \in \mathcal{F}$, then there exist a unique isomorphism $\alpha: T \rightarrow T^{\prime}$ and a unique isomorphism $\sigma: F \rightarrow F^{\prime}$ making the diagram
commute.

Torsion subobject and torsion-free quotient object are functors

Proposition
Let $(\mathcal{T}, \mathcal{F})$ be a pretorsion theory for a category \mathcal{C}.

Torsion subobject and torsion-free quotient object are

 functors
Proposition

Let $(\mathcal{T}, \mathcal{F})$ be a pretorsion theory for a category \mathcal{C}. Choose, for every $X \in \mathcal{C}$, a short \mathcal{Z}-preexact sequence

$$
t(X) \xrightarrow{\varepsilon_{X}} X \xrightarrow{\eta_{X}} f(X),
$$

where $t(X) \in \mathcal{T}$ and $f(X) \in \mathcal{F}$.

Torsion subobject and torsion-free quotient object are

 functors
Proposition

Let $(\mathcal{T}, \mathcal{F})$ be a pretorsion theory for a category \mathcal{C}. Choose, for every $X \in \mathcal{C}$, a short \mathcal{Z}-preexact sequence

$$
t(X) \xrightarrow{\varepsilon_{X}} X \xrightarrow{\eta_{X}} f(X),
$$

where $t(X) \in \mathcal{T}$ and $f(X) \in \mathcal{F}$. Then the assignments $A \mapsto t(A)$, (resp., $A \mapsto f(A))$ extends to a functor $t: \mathcal{C} \rightarrow \mathcal{T}$ (resp., $f: \mathcal{C} \rightarrow \mathcal{F})$.

Torsion subobject and torsion-free quotient object are

 functorsIf, for every $X \in \mathcal{C}$, we chose another short \mathcal{Z}-preexact sequence

$$
t^{\prime}(X) \xrightarrow{\lambda_{X}} X \xrightarrow{\pi_{x}} f^{\prime}(X)
$$

with $t^{\prime}(X) \in \mathcal{T}, f^{\prime}(X) \in \mathcal{F}$, and $t^{\prime}: \mathcal{C} \rightarrow \mathcal{T}, f^{\prime}: \mathcal{C} \rightarrow \mathcal{F}$ are the functors corresponding to the new choice, then there is a unique natural isomorphism of functors $t \rightarrow t^{\prime}$ (resp., $f \rightarrow f^{\prime}$).

\mathcal{T} is a coreflective subcategory of \mathcal{C}

Theorem
Let $(\mathcal{T}, \mathcal{F})$ be a pretorsion theory for a category \mathcal{C}. Then the functor t is a right adjoint of the category embedding $e_{\mathcal{T}}: \mathcal{T} \hookrightarrow \mathcal{C}$, so that \mathcal{T} is a coreflective subcategory of \mathcal{C}.

\mathcal{T} is a coreflective subcategory of \mathcal{C}

Theorem
Let $(\mathcal{T}, \mathcal{F})$ be a pretorsion theory for a category \mathcal{C}. Then the functor t is a right adjoint of the category embedding $e_{\mathcal{T}}: \mathcal{T} \hookrightarrow \mathcal{C}$, so that \mathcal{T} is a coreflective subcategory of \mathcal{C}.
Dually, f is a left adjoint of the embedding $e_{\mathcal{F}}: \mathcal{F} \hookrightarrow \mathcal{C}$ and \mathcal{F} is a reflective subcategory of \mathcal{C}.

Further references

[1] M. Barr, Non-abelian torsion theories, Canad. J. Math. 25 (1973) 1224-1237
[2] B. A. Rattray, Torsion theories in non-additive categories, Manuscripta Math. 12 (1974), 285-305.
[3] D. Bourn and M. Gran, Torsion theories in homological categories, J. Algebra 305, 18-47 (2006).
[4] A. Buys, N. J. Groenewald and S. Veldsman, Radical and semisimple classes in categories. Quaestiones Math. 4 (1980/81), 205-220.
[5] A. Buys and S. Veldsman, Quasiradicals and radicals in categories. Publ. Inst. Math. (Beograd) (N.S.) 38(52) (1985), 51-63.

Further references

[6] M. M. Clementino, D. Dikranjan and W. Tholen, Torsion theories and radicals in normal categories, J. Algebra 305 (2006), 92-129.
[7] M. Grandis and G. Janelidze, From torsion theories to closure operators and factorization systems, to appear, 2019. [8] M. Grandis, G. Janelidze and L. Márki, Non-pointed exactness, radicals, closure operators, J. Aust. Math. Soc. 94 (2013), 348-361.
[9] G. Janelidze and W. Tholen, Characterization of torsion theories in general categories, in "Categories in algebra, geometry and mathematical physics", A. Davydov, M. Batanin, M. Johnson, S. Lack and A. Neeman Eds., Contemp. Math. 431, Amer. Math. Soc., Providence, RI, 2007, pp. 249-256.

Further references

[10] J. Rosický and W. Tholen, Factorization, fibration and torsion, arxiv/0801.0063, to appear in Journal of Homotopy and Related Structures.
[11] S. Veldsman, On the characterization of radical and semisimple classes in categories. Comm. Algebra 10 (1982), 913-938.
[12] S. Veldsman, Radical classes, connectednesses and torsion theories, Suid-Afrikaanse Tydskr. Natuurwetenskap Tegnol. 3 (1984), 42-45.
[13] S. Veldsman and R. Wiegandt, On the existence and nonexistence of complementary radical and semisimple classes, Quaestiones Math. 7 (1984), 213-224.

Cocommutative Hopf algebras

M. Gran, G. Kadjo, J. Vercruysse, A torsion theory in the category of cocommutative Hopf algebras, Appl. Categ. Structures 24
(2016), 269-282.

Cocommutative Hopf algebras

M. Gran, G. Kadjo, J. Vercruysse, A torsion theory in the category of cocommutative Hopf algebras, Appl. Categ. Structures 24
(2016), 269-282.
$\mathcal{C}=$ category of cocommutative Hopf K-algebras, over a fixed field K of characteristic zero.

Cocommutative Hopf algebras

M. Gran, G. Kadjo, J. Vercruysse, A torsion theory in the category of cocommutative Hopf algebras, Appl. Categ. Structures 24
(2016), 269-282.
$\mathcal{C}=$ category of cocommutative Hopf K-algebras, over a fixed field K of characteristic zero. \mathcal{C} is a semi-abelian category.

Cocommutative Hopf algebras

M. Gran, G. Kadjo, J. Vercruysse, A torsion theory in the category of cocommutative Hopf algebras, Appl. Categ. Structures 24
(2016), 269-282.
$\mathcal{C}=$ category of cocommutative Hopf K-algebras, over a fixed field K of characteristic zero. \mathcal{C} is a semi-abelian category.
\mathcal{C} has a torsion theory $(\mathcal{T}, \mathcal{F})$, where

Cocommutative Hopf algebras

M. Gran, G. Kadjo, J. Vercruysse, A torsion theory in the category of cocommutative Hopf algebras, Appl. Categ. Structures 24
(2016), 269-282.
$\mathcal{C}=$ category of cocommutative Hopf K-algebras, over a fixed field K of characteristic zero. \mathcal{C} is a semi-abelian category.
\mathcal{C} has a torsion theory $(\mathcal{T}, \mathcal{F})$, where $\mathcal{T} \cong$ category of Lie K-algebras and

Cocommutative Hopf algebras

M. Gran, G. Kadjo, J. Vercruysse, A torsion theory in the category of cocommutative Hopf algebras, Appl. Categ. Structures 24
(2016), 269-282.
$\mathcal{C}=$ category of cocommutative Hopf K-algebras, over a fixed field K of characteristic zero. \mathcal{C} is a semi-abelian category.
\mathcal{C} has a torsion theory $(\mathcal{T}, \mathcal{F})$, where $\mathcal{T} \cong$ category of Lie K-algebras and
$\mathcal{F} \cong$ category of groups.

