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From the symmetric group Sn to the monoid Mn

Several properties we teach every year to our first year students
about the symmetric group Sn can be easily extended or adapted
to the monoid Mn.

Here n ≥ 1 denotes a fixed integer,
X will be the set {1, 2, 3, . . . , n},
Sn is the group of all bijections (permutations) f : X → X , and
Mn is the monoid of all mappings f : X → X .

The operation in both cases is composition of mappings.
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Standard properties of Sn

(1) Every permutation can be written as a product of disjoint
cycles

, in a unique way up to the order of factors.

(2) Disjoint cycles permute.

(3) Every permutation can be written as a product of
transpositions.

(4) There is a group morphism sgn: Sn → {1,−1}. (The number
sgn(f ) is called the sign of the permutation f . )

(5) For n ≥ 2, Sn is the semidirect product of An and any
subgroup of Sn generated by a transposition.
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Every permutation is a product of disjoint cycles

Given any mapping f : X → X , it is possible to associate to f a
directed graph Gd

f = (X ,Ed
f ) (the graph associated to the function

f ), having X as a set of vertices and Ed
f := { (i , f (i)) | i ∈ X } as a

set of arrows. Hence Gd
f has n vertices and n arrows, one arrow

from i to f (i) for every i ∈ X . In the directed graph Gd
f , every

vertex has outdegree 1.



Every permutation is a product of disjoint cycles

If f : X → X is a permutation, every vertex in Gd
f has outdegree 1

and indegree 1. Any finite directed connected graph in which every
vertex has outdegree 1 and indegree 1 is a cycle. Therefore the
graph Gd

f , disjoint union of its connected components, is a disjoint
union of cycles in a unique way. Hence any permutation f is a
product of disjoint cycles.



For an arbitrary mapping f : X → X . . .

For any mapping f : X → X , we can argue in the same way, but
instead of a disjoint union of cycles, we get as Gd

f a disjoint union
of forests on cycles:



A forest on a cycle
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An arbitrary mapping f : X → X . . .

Any mapping f : X → X consists a lower part (a disjoint union of
cycles, i.e., a bijection) and an upper part (a forest).

For a mapping f : X = {1, 2, 3, . . . , n} → X = {1, 2, 3, . . . , n}:
(1) f is a bijection if and only if f n! = ιX .
(2) The graph Gd

f is a forest (i.e., the only cycles on Gd
f are the

loops) if and only if f n = f n+1.



The category of mappings M

Let M be the category whose objects are all pairs (X , f ), where
X = {1, 2, 3, . . . , n} for some n ≥ 1 and f : X → X is a mapping.

Hence M will be a small category with countably many objects.

A morphism g : (X , f )→ (X ′, f ′) in M is any mapping
g : X → X ′ for which the diagram

X
g
//

f
��

X ′

f ′

��

X g
// X ′

(1)

commutes.



The category of mappings M

Let M be the category whose objects are all pairs (X , f ), where
X = {1, 2, 3, . . . , n} for some n ≥ 1 and f : X → X is a mapping.
Hence M will be a small category with countably many objects.

A morphism g : (X , f )→ (X ′, f ′) in M is any mapping
g : X → X ′ for which the diagram

X
g
//

f
��

X ′

f ′

��

X g
// X ′

(1)

commutes.



The category of mappings M

Let M be the category whose objects are all pairs (X , f ), where
X = {1, 2, 3, . . . , n} for some n ≥ 1 and f : X → X is a mapping.
Hence M will be a small category with countably many objects.

A morphism g : (X , f )→ (X ′, f ′) in M is any mapping
g : X → X ′ for which the diagram

X
g
//

f
��

X ′

f ′

��

X g
// X ′

(1)

commutes.



The category of mappings M

The category M can also be seen from the point of view of
Universal Algebra.

It is equivalent to the category (variety) of all
finite algebras (X , f ) with one unary operation f and no axioms.
The morphisms in the category M are exactly the homomorphisms
in the sense of Universal Algebra.

The product decomposition of f as a product of disjoint forests on
cycles corresponds to the coproduct decomposition in this category
M as a coproduct of indecomposable algebras.

A congruence on (X , f ), in the sense of Universal Algebra, is an
equivalence relation ∼ on the set X such that, for all x , y ∈ X ,
x ∼ y implies f (x) ∼ f (y).
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The pretorsion theory (C,F) on M

Now let C be the full subcategory of M whose objects are the
pairs (X , f ) with f : X → X a bijection.

Let F be the full
subcategory of M whose objects are the pairs (X , f ) where f is a
mapping whose graph is a forest. (Here, C stands for cycles and F
stands for forests, or torsion-free objects, as we will see.)

Clearly, an object of M is an object both in C and in F if and only
if it is of the form (X , ιX ), where ιX : X → X is the identity
mapping. We will call these objects (X , ιX ) the trivial objects
of M. Let Triv be the full subcategory of M whose objects are all
trivial objects (X , ιX ).

Call a morphism g : (X , f )→ (X ′, f ′) in M trival if it factors
through a trivial object. That is, if there exists a trivial object
(Y , ιY ) and morphisms h : (X , f )→ (Y , ιY ) and
` : (Y , ιY )→ (X ′, f ′) in M such that g = `h.
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The pretorsion theory (C,F) on M

Proposition

If (X , f ) and (X ′, f ′) are objects of M, where f is a bijection and
the graph of f ′ is a forest, then every morphism
g : (X , f )→ (X ′, f ′) is trivial.

We will see that for every object (X , f ) in M there is a “short
exact sequence”

(A0, f |A0
A0

)
ε
↪→ (X , f )

π
� (X/∼, f ) (2)

with (A0, f |A0
A0

) ∈ C and (X/∼, f ) ∈ F .
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An example: an object (X , f ) in M
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The partition of X modulo ∼.
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The torsion-free quotient (X/∼, f ) of (X .f ) modulo ∼.
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Figure: The quotient set X/∼.



Preorders, partial orders and equivalence relations

A preorder on a set A is a relation ρ on A that is reflexive and
transitive.

Main examples of preorders on A:

(1) partial orders (i.e., ρ is also antisymmetric).

(2) equivalence relations (i.e., ρ is also symmetric).
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Proposition

Let A be a set. There is a one-to-one correspondence between the
set of all preorders ρ on A and the set of all pairs (∼,≤), where ∼
is an equivalence relation on A and ≤ is a partial order on the
quotient set A/∼.

The correspondence associates to every preorder ρ on A the pair
('ρ,≤ρ), where 'ρ is the equivalence relation defined, for every
a, b ∈ A, by a 'ρ b if aρb and bρa, and ≤ρ is the partial order on
A/'ρ defined, for every a, b ∈ A, by [a]'ρ ≤ [b]'ρ if aρb.

Conversely, for any pair (∼,≤) with ∼ an equivalence relation on
A and ≤ a partial order on A/∼, the corresponding preorder ρ(∼,≤)
on A is defined, for every a, b ∈ A, by aρ(∼,≤)b if [a]∼ ≤ [b]∼.
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('ρ,≤ρ), where 'ρ is the equivalence relation on A

defined, for every a, b ∈ A, by a 'ρ b if aρb and bρa,

and ≤ρ is the partial order on A/∼ defined,

for every a, b ∈ A, by [a]'ρ ≤ [b]'ρ if aρb.
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The category of preordered sets

Let Preord be the category of all non-empty preordered sets.

Objects: all pairs (A, ρ), where A is a non-empty set and ρ is a
preorder on A.
Morphisms f : (A, ρ)→ (A′, ρ′): all mappings f of A into A′ such
that aρb implies f (a)ρ′f (b) for all a, b ∈ A.

ParOrd: full subcategory of Preord whose objects are all partially
ordered sets (A, ρ), ρ a partial order.

Equiv: full subcategory of Preord whose objects are all preordered
sets (A,∼) with ∼ an equivalence relation on A.
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Trivial objects, trivial morphisms

Triv:=Preord ∩ Equiv, full subcategory of Preord whose objects
are all the objects of the form (A,=), where = denotes the
equality relation on A. We will call them the trivial objects of
Preord.

Hence Triv is a category isomorphic to the category of all
non-empty sets.

A morphism f : (A, ρ)→ (A′, ρ′) in Preord is trival if it factors
through a trivial object, that is, if there exist a trivial object (B,=)
and morphisms g : (A, ρ)→ (B,=) and h : (B,=)→ (A′, ρ′) in
Preord with f = hg .
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Prekernels

Let f : A→ A′ be a morphism in Preord. We say that a morphism
k : X → A in Preord is a prekernel

of f if the following properties
are satisfied:

1. fk is a trivial morphism.

2. Whenever λ : Y → A is a morphism in Preord and f λ is
trivial, then there exists a unique morphism λ′ : Y → X in
Preord such that λ = kλ′.
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Prekernel of a morphism f : A→ A′ in Preord

For every mapping f : A→ A′, the equivalence relation ∼f on A,
associated to f , is defined, for every a, b ∈ A, by a ∼f b if
f (a) = f (b).

Proposition

Let f : (A, ρ)→ (A′, ρ′) be a morphism in Preord. Then a
prekernel of f is the morphism k : (A, ρ ∩∼f )→ (A, ρ), where k
the identity mapping and ∼f is the equivalence relation on A
associated to f .
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Precokernels

Let f : A→ A′ be a morphism in Preord. A precokernel of f is a
morphism p : A′ → X such that:

1. pf is a trivial map.

2. Whenever λ : A′ → Y is a morphism such that λf is trivial,
then there exists a unique morphism λ1 : X → Y with
λ = λ1p.

Let f : X → Y and g : Y → Z be morphisms in Preord. We say

that X
f // Y

g
// Z is a short preexact sequence in Preord if

f is a prekernel of g and g is a precokernel of f .
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A canonical short preexact sequence for every (A, ρ) in
Preord.

Let A be any non-empty set, let ρ be a preorder on A and let 'ρ
be the equivalence relation on A defined by a 'ρ b if aρb and bρa
and ≤ρ is the partial order on A/'ρ induced by ρ, then

(A,'ρ)
k // (A, ρ)

π // (A/'ρ,≤ρ)

is a short preexact sequence in Preord with (A,'ρ) ∈ Equiv and
(A/'ρ,≤ρ) ∈ ParOrd.



Pretorsion theories

Fix an arbitrary category C and a non-empty class Z of
objects of C.

For every pair A,A′ of objects of C, we indicate by
TrivZ(A,B) the set of all morphisms in C that factor through an
object of Z. We will call these morphisms Z-trivial.

Let f : A→ A′ be a morphism in C. We say that a morphism
ε : X → A in C is a Z-prekernel of f if the following properties are
satisfied:

1. f ε is a Z-trivial morphism.

2. Whenever λ : Y → A is a morphism in C and f λ is Z-trivial,
then there exists a unique morphism λ′ : Y → X in C such
that λ = ελ′.
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Pretorsion theories

Proposition

Let f : A→ A′ be a morphism in C and let ε : X → A be a
Z-prekernel for f . Then the following properties hold.

1. ε is a monomorphism.

2. If λ : Y → A is any other Z-prekernel of f , then there exists a
unique isomorphism λ′ : Y → X such that λ = ελ′.

Dually, a Z-precokernel of f is a morphism η : A′ → X such that:

1. ηf is a Z-trivial morphism.

2. Whenever µ : A′ → Y is a morphism and µf is Z-trivial, then
there exists a unique morphism µ′ : X → Y with µ = µ′η.
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Pretorsion theories

If Cop is the opposite category of C, the Z-precokernel of a
morphism f : A→ A′ in C is the Z-prekernel of the morphism
f : A′ → A in Cop.

Let f : A→ B and g : B → C be morphisms in C. We say that

A
f // B

g
// C

is a short Z-preexact sequence in C if f is a Z-prekernel of g and
g is a Z-precokernel of f .

Clearly, if A
f // B

g
// C is a short Z-preexact sequence in C,

then

C
g
// B

f // A is a short Z-preexact sequence in Cop.
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Pretorsion theories: definition

Let C be an arbitrary category. A pretorsion theory (T ,F) for C
consists of two replete (= closed under isomorphism) full
subcategories T ,F of C, satisfying the following two conditions.

Set Z := T ∩ F .

(1) HomC(T ,F ) = TrivZ(T ,F ) for every object T ∈ T , F ∈ F .

(2) For every object B of C there is a short Z-preexact sequence

A
f // B

g
// C

with A ∈ T and C ∈ F .
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Like torsion theories in the abelian case

In the rest of the talk, whenever we will deal with a pretorsion
theory (T ,F) for a category C, the symbol Z will always indicate
the intersection T ∩ F .

Notice that if (T ,F) is a pretorsion theory for a category C, then
(F , T ) turns out to be a pretorsion theory in Cop.

Proposition

Let (T ,F) be a pretorsion theory in a category C, and let X be
any object in C.

1. If HomC(X ,F ) = TrivZ(X ,F ) for every F ∈ F , then X ∈ T .

2. If HomC(T ,X ) = TrivZ(T ,X ) for every T ∈ T , then X ∈ F .
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First properties

As a corollary, from Proposition 1.4 we have that given a
pretorsion theory (T ,F) in a category C, any two of the three
classes T ,F ,Z determine the third.

First of all, we have that the short Z-preexact sequence given in
Axiom (2) of the definition of pretorsion theory is uniquely
determined, up to isomorphism.
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Uniqueness of the short Z-preexact sequence

Proposition

Let C be a category and let (T ,F) be a pretorsion theory for C. If

T
ε // A

η
// F and T ′

ε′ // A
η′
// F ′

are Z-preexact sequences, where T ,T ′ ∈ T and F ,F ′ ∈ F , then
there exist a unique isomorphism α : T → T ′ and a unique
isomorphism σ : F → F ′ making the diagram

T
ε //

α
��

A
η
//

=
��

F

σ
��

T ′
ε′ // A

η′
// F ′

commute.



Torsion subobject and torsion-free quotient object are
functors

Proposition

Let (T ,F) be a pretorsion theory for a category C.

Choose, for
every X ∈ C, a short Z-preexact sequence

t(X )
εX // X

ηX // f (X ) ,

where t(X ) ∈ T and f (X ) ∈ F . Then the assignments A 7→ t(A),
(resp., A 7→ f (A)) extends to a functor t : C → T (resp.,
f : C → F).
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Torsion subobject and torsion-free quotient object are
functors

If, for every X ∈ C, we chose another short Z-preexact sequence

t ′(X )
λX // X

πX // f ′(X )

with t ′(X ) ∈ T , f ′(X ) ∈ F , and t ′ : C → T , f ′ : C → F are the
functors corresponding to the new choice, then there is a unique
natural isomorphism of functors t → t ′ (resp., f → f ′).



T is a coreflective subcategory of C

Theorem
Let (T ,F) be a pretorsion theory for a category C. Then the
functor t is a right adjoint of the category embedding eT : T ↪→ C,
so that T is a coreflective subcategory of C.

Dually, f is a left adjoint of the embedding eF : F ↪→ C and F is a
reflective subcategory of C.
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Cocommutative Hopf algebras

M. Gran, G. Kadjo, J. Vercruysse, A torsion theory in the category
of cocommutative Hopf algebras, Appl. Categ. Structures 24
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C = category of cocommutative Hopf K-algebras, over a fixed field
K of characteristic zero. C is a semi-abelian category.

C has a torsion theory (T ,F), where
T ∼= category of Lie K-algebras and
F ∼= category of groups.
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