Group gradings on matrix algebras

Sorin Dăscălescu University of Bucharest

May 14, 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let k be a field, and let G be a group.

A G-graded algebra (over k) is a k-algebra A with a decomposition

$$A = \oplus_{g \in G} A_g$$

as a sum of k-subspaces, such that

$$A_g A_h \subset A_{gh}$$

for any $g, h \in G$.

General Problem. If A is a k-algebra, determine (or even classify) all possible group gradings on A.

We are interested in the case where A is a structural matrix algebra over k, i.e. a subalgebra of $M_n(k)$ consisting of all matrices with zero entries on certain prescribed positions, and allowing anything on the other positions. For example

$$A = \begin{pmatrix} k & 0 & k & k & k & 0 & k & k \\ 0 & k & 0 & k & 0 & k & k & k \\ k & 0 & k & k & k & 0 & k & k \\ 0 & 0 & 0 & k & 0 & 0 & 0 & 0 \\ k & 0 & k & k & k & 0 & k & k \\ 0 & k & 0 & k & 0 & k & k & k \\ 0 & 0 & 0 & 0 & 0 & 0 & k & k \end{pmatrix}$$

The full matrix algebra $M_n(k)$ and the diagonal algebra k^n are examples of structural matrix algebras.

• Gradings on the full matrix algebra were considered for by Knus in 1969 in his Brauer theory for algebras graded by abelian groups.

• In his positive solution to the Specht problem for associative algebras over a field of characteristic zero, Kemer [1990] needed to describe all gradings on $M_2(k)$ by the cyclic group C_2 .

• Gradings on matrix algebras and on certain structural matrix algebras are used in the study of numerical invariants of PI algebras.

• C_2 -gradings on a matrix algebra are the superalgebra structures on matrices.

In *D*, *Ion*, *Năstăsescu*, *Rios* [1999] gradings on $M_n(k)$ for which any matrix unit e_{ij} is a homogeneous element were studied; such gradings were called good gradings.

In some cases, any G-grading on $A = M_n(k)$ is isomorphic to a good grading, for example if one of the conditions holds:

• There exists a graded A-module which is simple as an A-module.

- G is torsionfree.
- One of the matrix units e_{ij} is a homogeneous element.

Let $V = \bigoplus_{g \in G} V_g$ be a *G*-graded vector space of dimension *n*. Then the algebra End(V) has a *G*-grading given by

$$\operatorname{End}(V)_{\sigma} = \{ f \in \operatorname{End}(V) \mid f(V_g) \subset V_{\sigma g} \text{ for any } g \in G \}.$$

Denote by END(V) the G-graded algebra obtained in this way.

It was explained that any good *G*-grading on $M_n(k)$ is isomorphic to a graded algebra of the form END(V), where *V* is *n*-dimensional and *G*-graded; also, any graded algebra of the type END(V) is isomorphic to $M_n(k)$ with a certain good grading.

Thus instead of classifying good *G*-gradings on $M_n(k)$, we can classify graded algebras of the type END(V), where *V* is a *G*-graded vector space of dimension *n*.

If V is a G-graded vector space, and $\sigma \in G$, let $V(\sigma)$ be the G-graded vector space such that $V(\sigma) = V$ as a vector space, with the grading shifted by σ , i.e. $V(\sigma)_g = V_{g\sigma}$ for any $g \in G$.

It was proved in Caenepeel, D, Năstăsescu [2002]

Theorem. If V and W are G-graded vector spaces of dimension n, then $\text{END}(V) \simeq \text{END}(W)$ if and only if $W \simeq V(\sigma)$ for some $\sigma \in G$.

Corollary. Good G-gradings on $M_n(k)$ are classified by the orbits of the right biaction of S_n (by permutations) and G (by right translations) on G^n .

Theorem. If k is algebraically closed, then any C_m -grading on $M_n(k)$ is isomorphic to a good grading.

Descent theory and some related results of *Caenepeel, D, Le Bruyn* [1999] were used to prove:

Theorem. Let k be a field and let G be an abelian group. If V is a G-graded \overline{k} -vector space, then the forms of the good G-grading $\operatorname{END}(V)$ on $M_n(\overline{k})$ (i.e the G-gradings on $M_n(k)$ such that $\overline{k} \otimes_k M_n(k) \simeq \operatorname{END}(V)$ as G-graded \overline{k} -algebras) are in bijection to the Galois extensions of k with Galois group $\mathcal{I}(V) = \{\sigma \in G | V(\sigma) \simeq V\}$.

Bahturin, Seghal and Zaicev [2001], described all gradings on $M_n(k)$ by abelian groups G, in the case where k is algebraically closed of characteristic 0. The result was extended to gradings by arbitrary groups, for any algebraically closed k, in Bahturin, Zaicev [2002], [2003].

A grading is called a fine grading if the dimension of any homogeneous component is at most 1. A special type of fine grading is obtained as follows. Let *n* be a positive integer and ε a primitive *n*th root of unity in *k*. Consider the matrices in $M_n(k)$

$$X = \begin{pmatrix} \varepsilon^{n-1} & 0 & \dots & 0 \\ 0 & \varepsilon^{n-2} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}, Y = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 1 & 0 & 0 & \dots & 0 \end{pmatrix}$$

Then

$$XY = \varepsilon YX, X^n = I_n, Y^n = I_n$$

and $\{X^i Y^j \mid 0 \le i, j \le n-1\}$ is linearly independent, so $A = M_n(k)$ has a $C_n \times C_n = \langle g \rangle \times \langle h \rangle$ -grading given by $A_{g^i h^j} = k X^i Y^j$ for any $0 \le i, j \le n-1$. Denote this graded algebra by $A(n, \varepsilon)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Assume that k is algebraically closed of characteristic 0, and consider gradings by abelian groups G. The results of BSZ are:

Theorem I Any *G*-grading on $A = M_n(k)$ is isomorphic to one of the form $B \otimes C$, where *B* is a matrix algebra with a good grading, and *C* is a matrix algebra with a fine grading.

Theorem II Any fine grading on a matrix algebra is isomorphic to

$$A(n_1,\varepsilon_1)\otimes\ldots\otimes A(n_r,\varepsilon_r)$$

for some $r, n_1, \ldots, n_r, \varepsilon_1, \ldots, \varepsilon_r$.

A proof of Theorem I.

Based on ideas appearing in *D*, *Ion*, *Năstăsescu*, *Rios* [1999], *Caenepeel*, *D*, *Năstăsescu* [2002], and a graded version of the density theorem proved in *Gomez Pardo*, *Năstăsescu* [1991]; the result is contained in a structure result for graded simple algebras in the book of *Năstăsescu*, *Van Oystaeyen* [2004], without mentioning the interest for gradings on matrix algebras. A similar proof is given in *Elduque*, *Kochetov* [2013], where the gradings are described and classified.

Let k be a field (not necessarily algebraically closed), and let G be a group (not necessarily abelian). If $A = M_n(k)$ has a G-grading, let Σ be a gr-simple A-module, i.e. a simple object in the category of G-graded left A-modules. Let $\Delta = \text{End}_A(\Sigma)$, which has a G-grading given by

$$\Delta_g = \{ f \in \operatorname{End}_{\mathcal{A}}(\Sigma) | f(\Sigma_h) \subseteq \Sigma_{hg} \text{ for any } h \in G \}$$

Then Δ is a *G*-graded division algebra (i.e. any non-zero homogeneous element is invertible), and if *S* is a simple *A*-module, then $\Sigma \simeq S^m$ for some positive integer *m*, so $\Delta \simeq \operatorname{End}_A(S^m) \simeq M_m(k)$.

Moreover, Σ is a left A, right Δ graded bimodule.

In a similar manner, ${\rm End}(\Sigma_\Delta)$ is also equipped with a G-graded algebra structure, and one has a morphism of graded algebras

$$\phi: A \to \operatorname{End}(\Sigma_{\Delta}), \phi(a)(x) = ax.$$

By a graded version of the density theorem, ϕ is surjective, thus also bijective (since A is a simple algebra). We obtain that

$$A \simeq \operatorname{End}(\Sigma_{\Delta})$$

Since Δ is a graded division algebra, Σ is a free Δ -module with a homogeneous basis, thus $\Sigma \simeq V \otimes \Delta$ for some *G*-graded vector space *V*.

If G is abelian, then

$\operatorname{End}(\Sigma_{\Delta}) \simeq \operatorname{END}(V) \otimes \Delta$

as *G*-graded algebras. Thus any grading on $M_n(k)$ by an abelian group is the tensor product of a good grading and a graded division algebra (on certain matrix algebras). If *k* is algebraically closed, Δ_e is a finite extension of *k*, so $\Delta_e = k$; then all the homogeneous components of Δ have dimensions at most 1, so Δ has a fine grading; this is just Theorem I.

If G is not necessarily abelian, let $\sigma_1, \ldots, \sigma_r$ the degrees of the elements in a homogeneous Δ -basis of Σ . Then we get that $A \simeq M_r(\Delta)$ as graded algebras, where the grading on $M_r(\Delta)$ is given by

$$M_r(\Delta)(\sigma_1,\ldots,\sigma_r)_g = \begin{pmatrix} \Delta_{\sigma_1g\sigma_1^{-1}} & \Delta_{\sigma_1g\sigma_2^{-1}} & \ldots & \Delta_{\sigma_1g\sigma_r^{-1}} \\ \Delta_{\sigma_2g\sigma_1^{-1}} & \Delta_{\sigma_2g\sigma_2^{-1}} & \ldots & \Delta_{\sigma_2g\sigma_r^{-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \Delta_{\sigma_rg\sigma_1^{-1}} & \Delta_{\sigma_rg\sigma_2^{-1}} & \ldots & \Delta_{\sigma_rg\sigma_r^{-1}} \end{pmatrix}$$

In conclusion, describing gradings (by arbitrary groups) on matrix algebras (over arbitrary fields) reduces to finding all graded division algebra structures on matrix algebras.

Gradings on diagonal algebras

Let $A = k^n$. If k is algebraically closed, *Bichon* [2008] described gradings on A, by considering coactions of Hopf algebras on A and using an approach of Manin and Wang to show that there exists a Hopf algebra coaction on the diagonal algebra k^n , which is universal in a large class of Hopf algebras.

A different approach was used in D [2007] for describing all gradings on A for any field.

- A grading on A is called:
- faithful if supp(A) generates the group G.
- ergodic if $\dim(A_e) = 1$.

Ergodic gradings are classified by the following.

Theorem. Let $A = k^n$. Then the following assertions hold. (1) If char(k)|n, then there do not exist ergodic group gradings on A.

(2) If char(k) does not divide n, then the faithful ergodic group gradings on A are by abelian groups H of order n, such that k contains a primitive e-th root of unity, where e is the exponent of H. For such an H, any faithful ergodic H-grading on A is isomorphic to the group algebra kH with the usual H-grading.

The following shows that a faithful group grading on a diagonal algebra is some sort of a direct sum of ergodic gradings. If *M* is a non-empty subset of $\{1, \ldots, n\}$, we denote by $A_M = \sum_{j \in M} ke_j$; clearly $A_M \simeq k^{|M|}$.

Theorem. Let k be a field and let n be a positive integer. If $A = \bigoplus_{g \in G} A_g$ is a faithful grading on $A = k^n$ by the group G, then there exist

- Abelian groups H_1, \ldots, H_s of exponents e_1, \ldots, e_s , such that $|H_1| + \ldots + |H_s| = n$, and k contains a primitive e_i -th root of unity for any $1 \le i \le s$;
- A surjective group morphism $\phi : H_1 * \ldots * H_s \to G$ such that $\phi(H_i) \simeq H_i$ for any $1 \le i \le s$ (for simplicity we identify $\phi(H_i)$ and H_i);
- A partition M_1, \ldots, M_s of the set $\{1, \ldots, n\}$ such that $|M_i| = |H_i|$;
- An ergodic H_i -grading on the algebra A_{M_i} for any $1 \le i \le s$,

such that $\operatorname{supp}(A) = H_1 \cup \ldots \cup H_s$ and $A_g = \sum_{1 \le i \le s} (A_{M_i})_g$ for any $g \in \operatorname{supp}(A)$ (where we regard the H_i -grading of A_{M_i} as a *G*-grading).

Conversely, for any abelian groups H_1, \ldots, H_s , any group morphism $\phi : H_1 * \ldots * H_s \to G$, and any partition M_1, \ldots, M_s , satisfying conditions as above, a faithful G-grading on k^n can be constructed by putting together ergodic H_i -gradings of $A_{M_i} \simeq k^{|H_i|}$ for all $1 \le i \le s$ as a direct sum as above.

Gradings on upper block triangular matrix algebras

Let $A = M(\rho, k)$ be the algebra

$$\begin{pmatrix} M_{m_1}(k) & M_{m_1,m_2}(k) & \dots & M_{m_1,m_r}(k) \\ 0 & M_{m_2}(k) & \dots & M_{m_2,m_r}(k) \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & M_{m_r}(k) \end{pmatrix}$$

of upper block triangular matrices. Gradings on A are classified by

• Valenti, Zaicev[2012] for gradings by abelian groups, for algebraically closed k of characteristic 0.

• *Kotchetov, Yasumura* for gradings by abelian groups and arbitrary algebraically closed *k*.

• Yasumura [2018] for gradings by arbitrary groups and algebraically closed k of characteristic 0 or characteristic $> \dim A$.

Good gradings on structural matrix algebras

Joint work with Filoteia Beşleagă.

Let A be a structural matrix algebra over k. It is associated with a preorder relation ρ on the set $\{1, \ldots, n\}$; A consists of all matrices $(a_{ij})_{1 \le i,j \le n}$ such that $a_{ij} = 0$ whenever $(i,j) \notin \rho$. We denote $A = M(\rho, k)$; in other terminology, this is the incidence algebra over k associated with ρ .

PROBLEM. Classify all gradings on $A = M(\rho, k)$ such that each e_{ij} with $i\rho j$ is a homogeneous element (these are called good gradings).

Let \sim be the equivalence relation on $\{1, \ldots, n\}$ associated with ρ , i.e. $i \sim j$ if and only if $i\rho j$ and $j\rho i$, and let C be the set of equivalence classes. Then ρ induces a partial order \leq on C defined by $\hat{i} \leq \hat{j}$ if and only if $i\rho j$, where \hat{i} denotes the equivalence class of i.

For any $\alpha \in C$, let m_{α} be the number of elements of α .

Definition. A ρ -flag is an n-dimensional vector space V with a family $(V_{\alpha})_{\alpha \in C}$ of subspaces such that there is a basis B of V and a partition $B = \bigcup_{\alpha \in C} B_{\alpha}$ with the property that $|B_{\alpha}| = m_{\alpha}$ and $\bigcup_{\beta \leq \alpha} B_{\beta}$ is a basis of V_{α} for any $\alpha \in C$. If $\mathcal{F} = (V, (V_{\alpha})_{\alpha \in C})$ and $\mathcal{F}' = (V', (V'_{\alpha})_{\alpha \in C})$ are ρ -flags, then a morphism of ρ -flags from \mathcal{F} to \mathcal{F}' is a linear map $f : V \to V'$ such that $f(V_{\alpha}) \subset V'_{\alpha}$ for any $\alpha \in C$.

Example

If $A = M(\rho, k)$ is the algebra

$$\begin{pmatrix} M_{m_1}(k) & M_{m_1,m_2}(k) & \dots & M_{m_1,m_r}(k) \\ 0 & M_{m_2}(k) & \dots & M_{m_2,m_r}(k) \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & M_{m_r}(k) \end{pmatrix}$$

of upper block triangular matrices, with diagonal blocks of size m_1, \ldots, m_r , then ρ is such that $C = \{\alpha_1, \ldots, \alpha_r\}$ is totally ordered, say $\alpha_1 < \ldots < \alpha_r$, and $|\alpha_i| = m_i$ for any $1 \le i \le r$. A ρ -flag is a usual flag of signature (m_1, \ldots, m_r) .

Proposition. Let $\mathcal{F} = (V, (V_{\alpha})_{\alpha \in \mathcal{C}})$ be a ρ -flag. Then the algebra $\operatorname{End}(\mathcal{F})$ of endomorphisms of \mathcal{F} is isomorphic to $M(\rho, k)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

An application of this description is the computation of the automorphism group of a structural matrix algebra. The steps are:

• The $\operatorname{End}(\mathcal{F})$ -submodules of V are in a bijective correspondence with the antichains of C; let $\mathcal{A}(C)$ be the lattice structure on the set of all such antichains, induced via this bijection.

• An algebra automorphism $\varphi : \operatorname{End}(\mathcal{F}) \to \operatorname{End}(\mathcal{F})$ induces a linear isomorphism $\gamma : V \to V$ which is a φ' -isomorphism for a certain deformation φ' (also an algebra automorphism) of φ .

• γ induces an automorphism of the lattice of $\operatorname{End}(\mathcal{F})$ -submodules of V, thus also an automorphism of the lattice $\mathcal{A}(C)$. Such an automorphism is completely determined by an automorphism g of the poset C.

• φ can be recovered from g, the deformation constants producing φ' from φ , and a matrix of γ in a fixed pair of bases.

Define

$$\operatorname{Aut}_0(\mathcal{C},\leq) = \{g \in \operatorname{Aut}(\mathcal{C},\leq) \mid m_\alpha = m_{g(\alpha)} \text{ for any } \alpha \in \mathcal{C}\}$$

$$\mathcal{T} = \{(a_{ij})_{i\rho j} \subset k^* \mid a_{ij}a_{jr} = a_{ir} \text{ for any } i, j, r \text{ with } i\rho j, j\rho r\}$$

The automorphism group of a structural matrix algebra is described by

Theorem.

$$\operatorname{Aut}(\operatorname{End}(\mathcal{F})) \simeq \frac{U(M(\rho, k)) \rtimes (\operatorname{Aut}_0(\mathcal{C}) \ltimes \mathcal{T})}{D},$$

where

$$D = \{ \mathsf{diag}(d_1, \ldots, d_n) \rtimes (\mathsf{Id} \ltimes (d_i^{-1}d_j)_{i\rho j}) \mid d_1, \ldots, d_n \in k^* \}.$$

Another description, previously given by *Coelho* [1993], can be derived.

Back to good gradings on $M(\rho, k)$

A *G*-graded ρ -flag is a ρ -flag $(V, (V_{\alpha})_{\alpha \in C})$ such that *V* is a *G*-graded vector space, and the basis *B* from the definition of a ρ -flag consists of homogeneous elements.

If $\mathcal{F} = (V, (V_{\alpha})_{\alpha \in \mathcal{C}})$ is a *G*-graded ρ -flag, then $\operatorname{End}(\mathcal{F})$ is a *G*-graded algebra, with the grading given by

 $\operatorname{End}(\mathcal{F})_{\sigma} = \{ f \in \operatorname{End}(\mathcal{F}) \mid f(V_g) \subseteq V_{\sigma g} \text{ for any } g \in G \}.$

Denote it by END(\mathcal{F}); it is isomorphic to a good grading on $M(\rho, k)$.

Question. Do all good gradings on $M(\rho, k)$ arise in this way?

Giving a good *G*-grading on $M(\rho, k)$ is equivalent to giving a family $(u_{ij})_{i\rho j}$ of elements of *G* such that $u_{ij}u_{jr} = u_{ir}$ for any i, j, r with $i\rho j$ and $j\rho r$. Regard such a family as a function $u : \rho \to G$, defined by $u(i,j) = u_{ij}$ for any i, j with $i\rho j$; we call u a transitive function on ρ with values in *G*.

Examples of a transitive functions on ρ can be obtained as follows. Let $g_1, \ldots, g_n \in G$, and let $u_{ij} = g_i g_j^{-1}$ for any i, j with $i\rho j$. Then $(u_{ij})_{i\rho j}$ is a transitive function on ρ . A transitive function on ρ is called trivial if it is obtained in this way.

We associate with ρ the graph $\Gamma = (\Gamma_0, \Gamma_1)$ whose set Γ_0 of vertices is the set C of equivalence classes. The set Γ_1 of arrows is constructed as follows: if $\alpha, \beta \in C$, there is an arrow from α to β if $\alpha < \beta$ and there is no $\gamma \in C$ with $\alpha < \gamma < \beta$.

Proposition. Let G be a group. The following are equivalent:

(1) Any good G-grading on $M(\rho, k)$ arises from a graded flag.

(2) Any transitive function $u: \rho \to G$ is trivial.

(3) Any transitive function $w : \leq \rightarrow G$ is trivial, where \leq is the partial order on C.

(4) For any function $v : \Gamma_1 \to G$ such that $v(a_1) \dots v(a_r) = v(b_1) \dots v(b_s)$ for any paths $a_1 \dots a_r$ and $b_1 \dots b_s$ in Γ starting from the same vertex and terminating at the same vertex, there exists a function $f : \Gamma_0 \to G$ such that $v(a) = f(s(a))f(t(a))^{-1}$ for any $a \in \Gamma_1$.

(日) (同) (三) (三) (三) (○) (○)

Let $F(\Gamma)$ be the free group generated by the set Γ_1 of arrows of Γ . Let $A(\Gamma)$ be the subgroup of $F(\Gamma)$ generated by all elements of the form $a_1 \dots a_r b_p^{-1} \dots b_1^{-1}$, where $a_1 \dots a_r$ and $b_1 \dots b_p$ are two paths (in Γ) starting from the same vertex and terminating at the same vertex.

We also consider the subgroup $B(\Gamma)$ of $F(\Gamma)$ generated by all elements of the form $a_1 a_2^{\varepsilon_2} \dots a_m^{\varepsilon_m}$, where a_1, \dots, a_m are arrows forming in this order a cycle in the undirected graph obtained from Γ when omitting the direction of arrows, and $\varepsilon_i = 1$ if a_i is in the direction of the directed cycle given by a_1 , and $\varepsilon_i = -1$ otherwise. Clearly $A(\Gamma) \subseteq B(\Gamma)$.

Proposition. The following are equivalent.

(1) For any group G, any transitive function $u : \rho \to G$ is trivial. (2) $A(\Gamma)^N = B(\Gamma)^N$. (3) Any generator b of $B(\Gamma)$ can be written in the form $b = g_1 x_1 g_1^{-1} \dots g_m x_m g_m^{-1}$ for some positive integer m, some $g_1, \dots, g_m \in F(\Gamma)$ and some x_1, \dots, x_m among the generators in the construction of $A(\Gamma)$.

Example.

Assume that ρ is a preorder relation such that the associated graph Γ is of the form

for some integers $m \ge 3$ and $p \ge 1$. Then for any group G, any transitive function $u : \rho \to G$ is trivial.

Example.

Assume that ρ is a preorder relation such that the associated graph Γ is of the form

Thus the un-directed graph Γ^u associated to Γ is cyclic, and in Γ there are at least two vertices where both adjacent arrows terminate (equivalently, Γ^u is cyclic and Γ is not of the type in the previous example. Then for any non-trivial group G, there exist transitive functions $u : \rho \to G$ that are not trivial.

The simplest example of such a graph is

and the corresponding structural matrix algebra, whose not all good gradings arise from graded flags, is

$$\left(\begin{array}{cccc} k & 0 & k & k \\ 0 & k & k & k \\ 0 & 0 & k & 0 \\ 0 & 0 & 0 & k \end{array}\right)^{-}$$

Example.

If the corresponding graph is

then all transitive functions (on the corresponding preordered set) are trivial.

Classification of gradings of the type $END(\mathcal{F})$

Let $C = C^1 \cup \ldots \cup C^q$ be the decomposition of C in disjoint connected components; these correspond to the connected components of the undirected graph Γ^u . For each $1 \le t \le q$, let ρ_t be the preorder relation on the set $\bigcup \alpha$, by restricting ρ .

 $\alpha \in \mathcal{C}^t$

If $V^t = \sum_{\alpha \in \mathcal{C}^t} V_{\alpha}$, then $\mathcal{F}^t = (V^t, (V_{\alpha})_{\alpha \in \mathcal{C}^t})$ is a *G*-graded ρ_t -flag with basis $\bigcup_{\alpha \in \mathcal{C}^t} B_{\alpha}$. Obviously, $V = \bigoplus_{1 \le t \le q} V^t$. In a formal way we can write $\mathcal{F} = \mathcal{F}^1 \oplus \ldots \oplus \mathcal{F}^q$, where \mathcal{F} is a *G*-graded ρ -flag, and \mathcal{F}^t is a *G*-graded ρ_t -flag for each $1 \le t \le q$. **Definition.** Let ρ and μ be isomorphic preorder relations (i.e. the preordered sets on which ρ and μ are defined are isomorphic). Let C and D be the posets associated with ρ and μ , and let $g : C \to D$ be an isomorphism of posets. We say that a ρ -flag $\mathcal{F} = (V, (V_{\alpha})_{\alpha \in C}))$ is g-isomorphic to a μ -flag $\mathcal{G} = (W, (W_{\beta})_{\beta \in D}))$ if there is a linear isomorphism $u : V \to W$ such that $u(V_{\alpha}) = W_{g(\alpha)}$ for any $\alpha \in C$. If \mathcal{F} and \mathcal{G} are G-graded flags, we say that they are g-isomorphic as graded flags if there is such an u which is a morphism of graded vector spaces.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem. Let $\mathcal{F} = (V, (V_{\alpha})_{\alpha \in \mathcal{C}})$ and $\mathcal{F}' = (V', (V'_{\alpha})_{\alpha \in \mathcal{C}})$ be *G*-graded ρ -flags. Then the following assertions are equivalent: (1) END(\mathcal{F}) and END(\mathcal{F}') are isomorphic as G-graded algebras. (2) There exist $g \in Aut_0(\mathcal{C})$, $\sigma_1, \ldots, \sigma_a \in G$ and a g-isomorphism $\gamma: V \to V'$ between the (ungraded) ρ -flags \mathcal{F} and \mathcal{F}' , such that $\gamma_{{}_{1Vt}}^{|V'\overline{g}(t)}: V^t \to V'\overline{g}(t) \text{ is a linear isomorphism of left degree } \sigma_t \text{ for }$ any $1 \le t \le q$, where $\overline{g} \in S_q$ is the permutation induced by g, i.e. $g(\mathcal{C}^t) = \mathcal{C}^{\overline{g}(t)}$ (3) There exists a permutation $\tau \in S_q$, an isomorphism $g_t: \mathcal{C}^t \to \mathcal{C}^{\tau(t)}$ for each $1 \leq t \leq q$, and $\sigma_1, \ldots, \sigma_q \in G$, such that $\mathcal{F}^{t}(\sigma_{t})$ is g_{t} -isomorphic to $\mathcal{F}^{\prime\tau(t)}$ for any $1 \leq t \leq q$.

Theorem. The isomorphism types of *G*-gradings of the type $END(\mathcal{F})$, where \mathcal{F} is a *G*-graded ρ -flag, are classified by the orbits of the right action of the group $\prod_{\alpha \in \mathcal{C}} S(\alpha) \rtimes (Aut_0(\mathcal{C}) \ltimes G^q)$ on the set G^n .

If ρ is a partial order, then all good gradings are classified in *Beşleagă*, *D*, van Wyk [2018].

Theorem. Let *G* be a group. If $(u_{ij})_{i\rho j}$ and $(v_{ij})_{i\rho j}$ are two *G*-valued transitive functions on ρ , then the corresponding good *G*-gradings on $A = M(\rho, k)$ are isomorphic if and only if there exists an automorphism φ of the poset $(\{1, \ldots, n\}, \rho)$ such that $v_{ij} = u_{\varphi(i)\varphi(j)}$ for any *i*, *j* with $i\rho j$. Thus the isomorphism types of good *G*-gradings on $A = M(\rho, k)$ are in bijection to the orbits of the right action of $Aut(\rho)$ on $T(\rho, G)$.