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Let k be a field, and let G be a group.

A G -graded algebra (over k) is a k-algebra A with a decomposition

A = ⊕g∈GAg

as a sum of k-subspaces, such that

AgAh ⊂ Agh

for any g , h ∈ G .

General Problem. If A is a k-algebra, determine (or even classify)
all possible group gradings on A.



We are interested in the case where A is a structural matrix
algebra over k , i.e. a subalgebra of Mn(k) consisting of all
matrices with zero entries on certain prescribed positions, and
allowing anything on the other positions. For example

A =



k 0 k k k 0 k k
0 k 0 k 0 k k k
k 0 k k k 0 k k
0 0 0 k 0 0 0 0
k 0 k k k 0 k k
0 k 0 k 0 k k k
0 0 0 0 0 0 k k
0 0 0 0 0 0 k k


The full matrix algebra Mn(k) and the diagonal algebra kn are
examples of structural matrix algebras.



• Gradings on the full matrix algebra were considered for by Knus
in 1969 in his Brauer theory for algebras graded by abelian groups.

• In his positive solution to the Specht problem for associative
algebras over a field of characteristic zero, Kemer [1990] needed to
describe all gradings on M2(k) by the cyclic group C2.

• Gradings on matrix algebras and on certain structural matrix
algebras are used in the study of numerical invariants of PI
algebras.

• C2-gradings on a matrix algebra are the superalgebra structures
on matrices.



In D, Ion, Năstăsescu, Rios [1999] gradings on Mn(k) for which
any matrix unit eij is a homogeneous element were studied; such
gradings were called good gradings.

In some cases, any G -grading on A = Mn(k) is isomorphic to a
good grading, for example if one of the conditions holds:

• There exists a graded A-module which is simple as an A-module.

• G is torsionfree.

• One of the matrix units eij is a homogeneous element.



Let V = ⊕g∈GVg be a G -graded vector space of dimension n.
Then the algebra End(V ) has a G -grading given by

End(V )σ = {f ∈ End(V ) | f (Vg ) ⊂ Vσg for any g ∈ G}.

Denote by END(V ) the G -graded algebra obtained in this way.

It was explained that any good G -grading on Mn(k) is isomorphic
to a graded algebra of the form END(V ), where V is
n-dimensional and G -graded; also, any graded algebra of the type
END(V ) is isomorphic to Mn(k) with a certain good grading.

Thus instead of classifying good G -gradings on Mn(k), we can
classify graded algebras of the type END(V ), where V is a
G -graded vector space of dimension n.



If V is a G -graded vector space, and σ ∈ G , let V (σ) be the
G -graded vector space such that V (σ) = V as a vector space, with
the grading shifted by σ, i.e. V (σ)g = Vgσ for any g ∈ G .

It was proved in Caenepeel, D, Năstăsescu [2002]

Theorem. If V and W are G -graded vector spaces of dimension
n, then END(V ) ' END(W ) if and only if W ' V (σ) for some
σ ∈ G .

Corollary. Good G -gradings on Mn(k) are classified by the orbits
of the right biaction of Sn (by permutations) and G (by right
translations) on Gn.



Theorem. If k is algebraically closed, then any Cm-grading on
Mn(k) is isomorphic to a good grading.

Descent theory and some related results of Caenepeel, D, Le Bruyn
[1999] were used to prove:

Theorem. Let k be a field and let G be an abelian group. If V is
a G -graded k-vector space, then the forms of the good G -grading
END(V ) on Mn(k) (i.e the G -gradings on Mn(k) such that
k ⊗k Mn(k) ' END(V ) as G -graded k-algebras) are in bijection to
the Galois extensions of k with Galois group
I(V ) = {σ ∈ G |V (σ) ' V } .



Bahturin, Seghal and Zaicev [2001], described all gradings on
Mn(k) by abelian groups G , in the case where k is algebraically
closed of characteristic 0. The result was extended to gradings by
arbitrary groups, for any algebraically closed k, in Bahturin, Zaicev
[2002], [2003].



A grading is called a fine grading if the dimension of any
homogeneous component is at most 1. A special type of fine
grading is obtained as follows. Let n be a positive integer and ε a
primitive nth root of unity in k . Consider the matrices in Mn(k)

X =


εn−1 0 . . . 0

0 εn−2 . . . 0
. . . . . . . . . . . .
0 0 . . . 1

 ,Y =


0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
1 0 0 . . . 0


Then

XY = εYX ,X n = In,Y
n = In

and {X iY j | 0 ≤ i , j ≤ n − 1} is linearly independent, so
A = Mn(k) has a Cn × Cn =< g > × < h >-grading given by
Ag ihj = kX iY j for any 0 ≤ i , j ≤ n − 1. Denote this graded
algebra by A(n, ε).



Assume that k is algebraically closed of characteristic 0, and
consider gradings by abelian groups G . The results of BSZ are:

Theorem I Any G -grading on A = Mn(k) is isomorphic to one of
the form B ⊗ C , where B is a matrix algebra with a good grading,
and C is a matrix algebra with a fine grading.

Theorem II Any fine grading on a matrix algebra is isomorphic to

A(n1, ε1)⊗ . . .⊗ A(nr , εr )

for some r , n1, . . . , nr , ε1, . . . , εr .



A proof of Theorem I.

Based on ideas appearing in D, Ion, Năstăsescu, Rios [1999],
Caenepeel, D, Năstăsescu [2002], and a graded version of the
density theorem proved in Gomez Pardo, Năstăsescu [1991]; the
result is contained in a structure result for graded simple algebras
in the book of Năstăsescu, Van Oystaeyen [2004], without
mentioning the interest for gradings on matrix algebras.
A similar proof is given in Elduque, Kochetov [2013], where the
gradings are described and classified.



Let k be a field (not necessarily algebraically closed), and let G be
a group (not necessarily abelian). If A = Mn(k) has a G -grading,
let Σ be a gr-simple A-module, i.e. a simple object in the category
of G -graded left A-modules. Let ∆ = EndA(Σ), which has a
G -grading given by

∆g = {f ∈ EndA(Σ)| f (Σh) ⊆ Σhg for any h ∈ G}

Then ∆ is a G -graded division algebra (i.e. any non-zero
homogeneous element is invertible), and if S is a simple A-module,
then Σ ' Sm for some positive integer m, so
∆ ' EndA(Sm) ' Mm(k).

Moreover, Σ is a left A, right ∆ graded bimodule.



In a similar manner, End(Σ∆) is also equipped with a G -graded
algebra structure, and one has a morphism of graded algebras

φ : A→ End(Σ∆), φ(a)(x) = ax .

By a graded version of the density theorem, φ is surjective, thus
also bijective (since A is a simple algebra). We obtain that

A ' End(Σ∆)

Since ∆ is a graded division algebra, Σ is a free ∆-module with a
homogeneous basis, thus Σ ' V ⊗∆ for some G -graded vector
space V .



If G is abelian, then

End(Σ∆) ' END(V )⊗∆

as G -graded algebras. Thus any grading on Mn(k) by an abelian
group is the tensor product of a good grading and a graded
division algebra (on certain matrix algebras).
If k is algebraically closed, ∆e is a finite extension of k , so ∆e = k ;
then all the homogeneous components of ∆ have dimensions at
most 1, so ∆ has a fine grading; this is just Theorem I.



If G is not necessarily abelian, let σ1, . . . , σr the degrees of the
elements in a homogeneous ∆-basis of Σ. Then we get that
A ' Mr (∆) as graded algebras, where the grading on Mr (∆) is
given by

Mr (∆)(σ1, . . . , σr )g =


∆σ1gσ

−1
1

∆σ1gσ
−1
2

. . . ∆σ1gσ
−1
r

∆σ2gσ
−1
1

∆σ2gσ
−1
2

. . . ∆σ2gσ
−1
r

. . . . . . . . . . . .
∆σrgσ

−1
1

∆σrgσ
−1
2

. . . ∆σrgσ
−1
r


In conclusion, describing gradings (by arbitrary groups) on matrix
algebras (over arbitrary fields) reduces to finding all graded division
algebra structures on matrix algebras.



Gradings on diagonal algebras

Let A = kn. If k is algebraically closed, Bichon [2008] described
gradings on A, by considering coactions of Hopf algebras on A and
using an approach of Manin and Wang to show that there exists a
Hopf algebra coaction on the diagonal algebra kn, which is
universal in a large class of Hopf algebras.

A different approach was used in D [2007] for describing all
gradings on A for any field.

A grading on A is called:
• faithful if supp(A) generates the group G .
• ergodic if dim(Ae) = 1.



Ergodic gradings are classified by the following.

Theorem. Let A = kn. Then the following assertions hold.
(1) If char(k)|n, then there do not exist ergodic group gradings on
A.
(2) If char(k) does not divide n, then the faithful ergodic group
gradings on A are by abelian groups H of order n, such that k
contains a primitive e-th root of unity, where e is the exponent of
H. For such an H, any faithful ergodic H-grading on A is
isomorphic to the group algebra kH with the usual H-grading.



The following shows that a faithful group grading on a diagonal
algebra is some sort of a direct sum of ergodic gradings.
If M is a non-empty subset of {1, . . . , n}, we denote by
AM =

∑
j∈M kej ; clearly AM ' k |M|.



Theorem. Let k be a field and let n be a positive integer. If
A = ⊕g∈GAg is a faithful grading on A = kn by the group G , then
there exist

• Abelian groups H1, . . . ,Hs of exponents e1, . . . , es , such that
|H1|+ . . .+ |Hs | = n, and k contains a primitive ei -th root of unity
for any 1 ≤ i ≤ s;
• A surjective group morphism φ : H1 ∗ . . . ∗ Hs → G such that
φ(Hi ) ' Hi for any 1 ≤ i ≤ s (for simplicity we identify φ(Hi ) and
Hi );
• A partition M1, . . . ,Ms of the set {1, . . . , n} such that
|Mi | = |Hi |;
• An ergodic Hi -grading on the algebra AMi

for any 1 ≤ i ≤ s,

such that supp(A) = H1 ∪ . . . ∪ Hs and Ag =
∑

1≤i≤s(AMi
)g for

any g ∈ supp(A) (where we regard the Hi -grading of AMi
as a

G -grading).



Conversely, for any abelian groups H1, . . . ,Hs , any group
morphism φ : H1 ∗ . . . ∗ Hs → G , and any partition M1, . . . ,Ms ,
satisfying conditions as above, a faithful G -grading on kn can be
constructed by putting together ergodic Hi -gradings of AMi

' k |Hi |

for all 1 ≤ i ≤ s as a direct sum as above.



Gradings on upper block triangular matrix algebras

Let A = M(ρ, k) be the algebra
Mm1(k) Mm1,m2(k) . . . Mm1,mr (k)

0 Mm2(k) . . . Mm2,mr (k)
. . . . . . . . . . . .
0 0 . . . Mmr (k)


of upper block triangular matrices. Gradings on A are classified by

• Valenti, Zaicev[2012] for gradings by abelian groups, for
algebraically closed k of characteristic 0.

• Kotchetov, Yasumura for gradings by abelian groups and
arbitrary algebraically closed k .

• Yasumura [2018] for gradings by arbitrary groups and
algebraically closed k of characteristic 0 or characteristic > dimA.



Good gradings on structural matrix algebras

Joint work with Filoteia Beşleagă.

Let A be a structural matrix algebra over k. It is associated with a
preorder relation ρ on the set {1, . . . , n}; A consists of all matrices
(aij)1≤i ,j≤n such that aij = 0 whenever (i , j) /∈ ρ. We denote
A = M(ρ, k); in other terminology, this is the incidence algebra
over k associated with ρ.

PROBLEM. Classify all gradings on A = M(ρ, k) such that each
eij with iρj is a homogeneous element (these are called good
gradings).



Let ∼ be the equivalence relation on {1, . . . , n} associated with ρ,
i.e. i ∼ j if and only if iρj and jρi , and let C be the set of
equivalence classes. Then ρ induces a partial order ≤ on C defined
by î ≤ ĵ if and only if iρj , where î denotes the equivalence class of
i .
For any α ∈ C, let mα be the number of elements of α.

Definition. A ρ-flag is an n-dimensional vector space V with a
family (Vα)α∈C of subspaces such that there is a basis B of V and

a partition B =
⋃
α∈C

Bα with the property that |Bα| = mα and⋃
β≤α

Bβ is a basis of Vα for any α ∈ C.

If F = (V , (Vα)α∈C) and F ′ = (V ′, (V ′α)α∈C) are ρ-flags, then a
morphism of ρ-flags from F to F ′ is a linear map f : V → V ′ such
that f (Vα) ⊂ V ′α for any α ∈ C.



Example

If A = M(ρ, k) is the algebra
Mm1(k) Mm1,m2(k) . . . Mm1,mr (k)

0 Mm2(k) . . . Mm2,mr (k)
. . . . . . . . . . . .
0 0 . . . Mmr (k)


of upper block triangular matrices, with diagonal blocks of size
m1, . . . ,mr , then ρ is such that C = {α1, . . . , αr} is totally
ordered, say α1 < . . . < αr , and |αi | = mi for any 1 ≤ i ≤ r . A
ρ-flag is a usual flag of signature (m1, . . . ,mr ).



Proposition. Let F = (V , (Vα)α∈C) be a ρ-flag. Then the algebra
End(F) of endomorphisms of F is isomorphic to M(ρ, k).



An application of this description is the computation of the
automorphism group of a structural matrix algebra. The steps are:

• The End(F)-submodules of V are in a bijective correspondence
with the antichains of C; let A(C ) be the lattice structure on the
set of all such antichains, induced via this bijection.

• An algebra automorphism ϕ : End(F)→ End(F) induces a
linear isomorphism γ : V → V which is a ϕ′-isomorphism for a
certain deformation ϕ′ (also an algebra automorphism) of ϕ.

• γ induces an automorphism of the lattice of End(F)-submodules
of V , thus also an automorphism of the lattice A(C ). Such an
automorphism is completely determined by an automorphism g of
the poset C.

• ϕ can be recovered from g , the deformation constants producing
ϕ′ from ϕ, and a matrix of γ in a fixed pair of bases.



Define

Aut0(C,≤) = {g ∈ Aut(C,≤) | mα = mg(α) for any α ∈ C}

T = {(aij)iρj ⊂ k∗ | aijajr = air for any i , j , r with iρj , jρr}

The automorphism group of a structural matrix algebra is
described by

Theorem.

Aut(End(F)) ' U(M(ρ, k)) o (Aut0(C) n T )

D
,

where
D = {diag(d1, . . . , dn) o (Id n (d−1

i dj)iρj) | d1, . . . , dn ∈ k∗}.

Another description, previously given by Coelho [1993], can be
derived.



Back to good gradings on M(ρ, k)

A G -graded ρ-flag is a ρ-flag (V , (Vα)α∈C) such that V is a
G -graded vector space, and the basis B from the definition of a
ρ-flag consists of homogeneous elements.

If F = (V , (Vα)α∈C) is a G -graded ρ-flag, then End(F) is a
G -graded algebra, with the grading given by

End(F)σ = {f ∈ End(F) | f (Vg ) ⊆ Vσg for any g ∈ G}.

Denote it by END(F); it is isomorphic to a good grading on
M(ρ, k).

Question. Do all good gradings on M(ρ, k) arise in this way?



Giving a good G -grading on M(ρ, k) is equivalent to giving a
family (uij)iρj of elements of G such that uijujr = uir for any i , j , r
with iρj and jρr . Regard such a family as a function u : ρ→ G ,
defined by u(i , j) = uij for any i , j with iρj ; we call u a transitive
function on ρ with values in G .

Examples of a transitive functions on ρ can be obtained as follows.
Let g1, . . . , gn ∈ G , and let uij = gig

−1
j for any i , j with iρj . Then

(uij)iρj is a transitive function on ρ. A transitive function on ρ is
called trivial if it is obtained in this way.

We associate with ρ the graph Γ = (Γ0, Γ1) whose set Γ0 of
vertices is the set C of equivalence classes. The set Γ1 of arrows is
constructed as follows: if α, β ∈ C, there is an arrow from α to β if
α < β and there is no γ ∈ C with α < γ < β.



Proposition. Let G be a group. The following are equivalent:
(1) Any good G -grading on M(ρ, k) arises from a graded flag.
(2) Any transitive function u : ρ→ G is trivial.
(3) Any transitive function w :≤→ G is trivial, where ≤ is the
partial order on C.
(4) For any function v : Γ1 → G such that
v(a1) . . . v(ar ) = v(b1) . . . v(bs) for any paths a1 . . . ar and
b1 . . . bs in Γ starting from the same vertex and terminating at the
same vertex, there exists a function f : Γ0 → G such that
v(a) = f (s(a))f (t(a))−1 for any a ∈ Γ1.



Let F (Γ) be the free group generated by the set Γ1 of arrows of Γ.
Let A(Γ) be the subgroup of F (Γ) generated by all elements of the
form a1 . . . arb

−1
p . . . b−1

1 , where a1 . . . ar and b1 . . . bp are two
paths (in Γ) starting from the same vertex and terminating at the
same vertex.
We also consider the subgroup B(Γ) of F (Γ) generated by all
elements of the form a1a

ε2
2 . . . aεmm , where a1, . . . , am are arrows

forming in this order a cycle in the undirected graph obtained from
Γ when omitting the direction of arrows, and εi = 1 if ai is in the
direction of the directed cycle given by a1, and εi = −1 otherwise.
Clearly A(Γ) ⊆ B(Γ).

Proposition. The following are equivalent.
(1) For any group G , any transitive function u : ρ→ G is trivial.
(2) A(Γ)N = B(Γ)N .
(3) Any generator b of B(Γ) can be written in the form
b = g1x1g

−1
1 . . . gmxmg

−1
m for some positive integer m, some

g1, . . . , gm ∈ F (Γ) and some x1, . . . , xm among the generators in
the construction of A(Γ).



Example.

Assume that ρ is a preorder relation such that the associated graph
Γ is of the form

m•

m−1•

am−1

<<

•m+1

bp+1

bb

2• •m+p

1•
a1

bb

b1

<<

for some integers m ≥ 3 and p ≥ 1. Then for any group G , any
transitive function u : ρ→ G is trivial.



Example.

Assume that ρ is a preorder relation such that the associated graph
Γ is of the form

•

��

•

��
• •

•

__

•

??

Thus the un-directed graph Γu associated to Γ is cyclic, and in Γ
there are at least two vertices where both adjacent arrows
terminate (equivalently, Γu is cyclic and Γ is not of the type in the
previous example. Then for any non-trivial group G , there exist
transitive functions u : ρ→ G that are not trivial.



The simplest example of such a graph is

•

�� ��
• •

•

__ ??

and the corresponding structural matrix algebra, whose not all
good gradings arise from graded flags, is

k 0 k k
0 k k k
0 0 k 0
0 0 0 k

 .



Example.

If the corresponding graph is

v•

•

~~

•

��
•

AA

•

hh

•

``

•

??

then all transitive functions (on the corresponding preordered set)
are trivial.



Classification of gradings of the type END(F)

Let C = C1 ∪ . . . ∪ Cq be the decomposition of C in disjoint
connected components; these correspond to the connected
components of the undirected graph Γu. For each 1 ≤ t ≤ q, let ρt
be the preorder relation on the set

⋃
α∈Ct

α, by restricting ρ.

If V t =
∑
α∈Ct

Vα, then F t = (V t , (Vα)α∈Ct ) is a G -graded ρt-flag

with basis
⋃
α∈Ct

Bα. Obviously, V =
⊕

1≤t≤q
V t . In a formal way we

can write F = F1 ⊕ . . .⊕Fq, where F is a G -graded ρ-flag, and
F t is a G -graded ρt-flag for each 1 ≤ t ≤ q.



Definition. Let ρ and µ be isomorphic preorder relations (i.e. the
preordered sets on which ρ and µ are defined are isomorphic). Let
C and D be the posets associated with ρ and µ, and let g : C → D
be an isomorphism of posets. We say that a ρ-flag
F = (V , (Vα)α∈C)) is g -isomorphic to a µ-flag
G = (W , (Wβ)β∈D)) if there is a linear isomorphism u : V →W
such that u(Vα) = Wg(α) for any α ∈ C.
If F and G are G -graded flags, we say that they are g -isomorphic
as graded flags if there is such an u which is a morphism of graded
vector spaces.



Theorem. Let F = (V , (Vα)α∈C) and F ′ = (V ′, (V ′α)α∈C) be
G -graded ρ-flags. Then the following assertions are equivalent:
(1) END(F) and END(F ′) are isomorphic as G -graded algebras.
(2) There exist g ∈ Aut0(C), σ1, . . . , σq ∈ G and a g -isomorphism
γ : V → V ′ between the (ungraded) ρ-flags F and F ′, such that

γ
|V ′g(t)

|V t : V t → V ′g(t) is a linear isomorphism of left degree σt for
any 1 ≤ t ≤ q, where g ∈ Sq is the permutation induced by g , i.e.
g(Ct) = Cg(t).
(3) There exists a permutation τ ∈ Sq, an isomorphism
gt : Ct → Cτ(t) for each 1 ≤ t ≤ q, and σ1, . . . , σq ∈ G , such that
F t(σt) is gt-isomorphic to F ′τ(t) for any 1 ≤ t ≤ q.



Theorem. The isomorphism types of G -gradings of the type
END(F), where F is a G -graded ρ-flag, are classified by the orbits
of the right action of the group

∏
α∈C S(α) o (Aut0(C) n Gq) on

the set Gn.



If ρ is a partial order, then all good gradings are classified in
Beşleagă, D, van Wyk [2018].

Theorem. Let G be a group. If (uij)iρj and (vij)iρj are two
G -valued transitive functions on ρ, then the corresponding good
G -gradings on A = M(ρ, k) are isomorphic if and only if there
exists an automorphism ϕ of the poset ({1, . . . , n}, ρ) such that
vij = uϕ(i)ϕ(j) for any i , j with iρj .
Thus the isomorphism types of good G -gradings on A = M(ρ, k)
are in bijection to the orbits of the right action of Aut(ρ) on
T (ρ,G ).


