Non-unique factorizations in rings of integer-valued polynomials
 Sarah Nakato (Graz University of Technology, Austria)
 snakato@tugraz.at

Let D be a domain with quotient field K. The ring of integer-valued polynomials on D,

$$
\operatorname{Int}(D)=\{f \in D[x] \mid \forall a \in D, f(a) \in D\}
$$

in general does not have unique factorization of elements.
In this talk, we discuss non-unique factorizations in $\operatorname{Int}(D)$ where D is a Dedekind domain with infinitely many maximal ideals of finite index.

We present two main results. First, for any finite multiset N of natural numbers greater than 1 , there exists a polynomial $f \in \operatorname{Int}(D)$ which has exactly $|N|$ essentially different factorizations of the prescribed lengths. In particular, this implies that every finite non-empty set N of natural numbers greater than 1 occurs as a set of lengths of a polynomial $f \in \operatorname{Int}(D)$. Second, we show that the multiplicative monoid $(\operatorname{Int}(D) \backslash\{0\}, \times)$ of $\operatorname{Int}(D)$ is not a transfer Krull monoid.

